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PREFACE

The prototypical constraint-based solid modeler, C*Mod, presented in this thesis, is an
extension to an existing educational solid modeler, MacMod844. MacMod844 is a solid and
void modeling program used by the Department of Architecture, Computer-Aided Architectural
Design Department, as the fundamental method of studying and implementing concepts of two-
dimensional drawing, and three-dimensional solid visualization and representation, as well as
the application of these concepts to architectural design. This program was written in part by
the author, and by other graduate students in the CAAD program, as a scries of cducational
exercises. The results of the MacMod844 solid modeler stem from rescarch provided by Dr.
Christos Yessios, and by the completion of the excercises accomplished during a six quarter

sequence of architecture classes provided by the Department of Architecture,
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CHAPTER 1

INTRODUCTION

In 1972, Nicholas Negroponte wrote "Computer-aided design cannot occur without
machinc intelligence - and would be dangerous without it" (Negroponte,1972).  This carly
insight 1o the possible introduction of knowledge-basced design systems 1o architectural design
has led the way for many academic theories and applications.  However, unil recently, the
profession has greatly ignored the potential of such systems, relying on the utilization of
computer technology to aid in the production phases of the design process - mainly drafting.
More recently, the advances in computer technology. predominantly in the micro-computer
arena, has led 1o a greater understanding, representation, and manipulation of knowledge in a
manner which has made it possible o construct knowledge-based design systems capable of
aiding the designer in the carly phases of the design process.  According to R.D.Coyne. "The
cmphasis now is in finding methods of appropriating and rendering operable the knowledge
availabie w designers” (Coyne, 1990).

Knowledge, for the purpose of this discussion, includes the process, declaration, and
state of having information pertaining to a particular entity or group of entitics. It becomes the
representation of the ability to gain, apply, and state the behavioral attributes an object or entity
may posscss. The interaction between an entity and the world, or between entities, is therefore
limited or constrained to the knowledge representing that entity. A constraint, therefore,
becomes the ability to limit the use, genceration or manipulation of entitics within the cstablished

bounds of knowledge.
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This thesis exploies the use of design knowledge with the intent of establishing a morce

logical and cfficient method of utilizing computers 10 assist in the design activity. A
prototypical application, C*Mod, is presented to support the fundamental applications of
constraint-based solid modeling, and to provide a visual representation of the concepts
presented.  One such concept is the use of design knowledge to interactively constrain the
design spacc. the space in which design is allowed to emerge. By implementing this ability o
provide and utilize knowledge, it is possible to develop a constraint-based solid modeler for

architectural applications which provides feedback to the designer in "real time”.

1.1 Overview

The goal of this application is 0 provide an avenue in which knowledge can be
obtained, synthesized, and utilized 1o constrain the interactive generation, manipulation and
behavior of geometrie solid elements. By utilizing available design knowiledge 10 constrain
geomeltric entities, it will be possible to bring a basic three-dimensional solid modeler closer o
the carly stages of the design process, and allow a CAAD system o be more of an aid to the
designer.

Constraining the interactive design process can be illustrated by considering 4
conceptual design of a building on a site which zoning regulations imposce limitations to the

design. Initially, there are limitations to the site itself, boundarics which limit the breadth of

SITE BOUNDARY
- Establishes the initial spatial
constraint on the design space.

: SITE DESCRIPTORS
" - Establishes relationships between
the site boundaries and the world.

Figure 1. Preliminary site information




3
construction and descriptive symbols which establish relationships and adjacencics.  Typically,
there may be sctback requirements for the front, side, and back yards, cstablishing a minimum
distance which a building may be placed with respect to the site boundaries.  Figure 1, above,

illustrates this preliminary site information. There may be incremental requirements such as

A 4
‘, \/ HEIGHT LIMITATION
B f AN - Establishes the initial design
,__’LV,,--"' / volume for the design space.
T TN K
-\f. o A\

* 7 SHADOW/SUNLIGHT RESTRICTION
. - Establishes the setback for
maximum shadow limitations.

Figure 2. Supplemental site information

height limitations and sunlight restrictions. Figure 2. above, provides a graphic representation
of these sccondary site restrictions.  Additionally, legal constraints, such as right-of-ways,
may be imposed, further restricting the site. By applying these  limitations  upon a
geometrical entity, we have created a design space which contains knowledge about the
allowablc design volume. An illustration of this design space with the imposced site restrictions
is found in figure 3.

DESIGN SPACE

DESIGN SPACE
- Resulting allowable design space
after constraints imposed.

SITE LIMITATIONS
- Establish required setbacks, right-
of-way, and other site restrictions.

Right-of-way.

Figure 3. Design space constrained by site limitations
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Knowledge of the design space can then be imposed on the interactive three-
dimensional solid modeling process, allowing only acceptable solutions to be generated and
manipulated within this allowable design space. Figure 4, telow, graphically illustrates the

results of such interactive modeling within the constraints of site design knowledge.

DYNAMIC MODELING
- Exploring the possible solutions
within the allowable design space.

Figure 4. [lustration of modeling within the design space.

The fundamental basis tor this thesis reselts in this ability o constrain, with the use of
design knowledge, the generation, manipulation, and behavior of geomctrical entitics. By
allowing the user to interactively identify and specity design knowledge, the interaction of
these geometrical entitics reduces to constraint satistaction in which the lower level decisions
are required to be met. Therefore, the benefit of such constraint-bascd modcling is that the
designer has imposed these lower level decisions at the coneeptual stage of the design process.
and provides him with the oppurtunity to utilize the computer and design knowledge, carly in

this process.

1.2 Application to Current CAAD Theory

One of the current goals of CAAD is to enhance the ability to design by aiding in the
design process. The architectural design process involves the analysis, synthesis, refinement,
and implementation of a set of requirements, into a viable design solution which satisfies those

goals (AIA,1987). Current CAAD theory involves the modcling of, in terms of a computer
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model, this process of design. Many academic theorists and practitioners have proposed
methods of modeling this process. Among them, two basic methods of modeling the design
process have emerged; simulation, which is a problem solving approach to design in which a
design solution is postulated and then evaluated against the design goals {or compliance, and
optimization, where the performance criteria, constraints, and decisions are stated, and the best
possible design is produced. Both methods are bricfly presented in order to juxtapose the

method which this paper is based.

SIMULATION DESIGN . DESIGN PERFORMANCE DECISION DESIGN
OPTIMIZATION GOALS OBJECTIVES VARIABLES VARIABLES SOLUTION

Figure 5. Components of the modeling process.

Both methods incorporate four major clements into the process: design goals, which
state the specific goals which the design is required to obtain, design objectives, which state
the specific clements the design must meet in order to satisly the design goals, performance
variables, which state the specific variables which must acquire some values, or certain ranges
of values, which will satisty the objectives, and decision variables which state the specific
assignment of values to the performance variables (Coyne, 1990). 1t is the use ol these
clements, and how they are implemented, which constitutes the current theory of knowledge-
based design systems applicable to CAAD.

The simulation process involves the postulation of a solution to a design problem in
which the decision variables are made., The performance variables are determined from the
decision variables, and cvaluated against the design objectives to determine whether the
solution meets the design goals. If it does, then the solution satisfies the problem. It it docs
not meet the design goals, the solution must return to the decision variable state, and the
decision variables must be modified. This model of the process proposes a solution to a given

problem, then evaluates it against the design goals. (Coyne,1990; Mitchell,1990)



SIMULATION PROCESS: (design postulated then evaluated)

STATE DETERMINE EVALUATE

DECISIONS » PERFORMANCE . 4. DESIGN

VARIABLES VARIABLES OBJUECTIVES
[y

YES SATISFIES
\ PROBLEM

MODIFY DECISION VARIABLES

Figure 6. Flow diagram of the simulation process of achieving problem satisfaction.

The optimization process involves the gencration of a design solution from a scarch
through all of the possible states which mect the stated decision variables and performance
variables. This model of the process evaluates the design goals and variables, and provides a

theoretically optimal solution which satisfies the problem. (Coyne, 1990; Mitchell, 1990)

POSSIBLE

STATE DETERMINE T YES SATISFIES
DECISIONS o PERFORMANCE % SOLUTION - | PROBEM
VARIABLES VARIABLES al STATES

]

CREATE
OPTIMIZATION PROCESS: (best-possible design) @

Figure 7. Flow Diagram of the optimization process of achieving problem satisfaction.

The implementation of the Constraint-Based Modeler, chooses 10 model the design
process, not as a complete generator of solutions, but as an interactive tool in which the
designer can manipulate the proposed solution within the process o guide the solution to 4
satisfactory conclusion. This method establishes the criteria in similar fashion to the
optimization modcl, that is prior to the introduction of a design solution.  However, in
contrast, it does not scarch through the possible states, it limits or constrains the interactive

generative process to that of the design knowledge cstablished.




ESTABLISH DETERMINE SATISFIES j
DESIGN PERFORMANCE YES OESIGN i——e  PROBLEM
OBJECTIVES VARIABLES GOALS J 1

INTERACTIVELY

YES ESTABLISH
DECISION

VARIABLES

PERFORM
CONSTRAINT
OPERATIONS

INTERACTIVE CONSTRAINT PROCESS: (solution generated within constraint limitations)

Figure 8. Flow diagram of the interactive constraint process of achieving problem
satisfaction

The implication of this approach to the current CAAD theory centers around the
interactive use of the design knowledge during the conceptual stage of design. The application
seeks to utilize this information interactively in a graphic and visual mode, introducing design

knowledge. and theretore constraints, to a three-dimensional solid modcler.,

1.3 Historical Basis

The study and application of design knowledge o Computer-Aided  Architectural
Design is not a new concept. The historical basis of this thesis relics on the foundations sct
forth by many theories proposed over the past thirty years. Most notable are the foundations
provided in three main arcas: empirical studics, theorcetical issucs, and cducation. The arca of
empirical studics, (Eastman, 1970; Foz, 1973: Henrion, 1974; Krauss and Myer, 1970;
Negroponte, 1970), tocused on the development of models that account tor the behaviors of
architectural practice, with specific emphasis on formalizing the design process.  Theoretical

issues (Coyne, 1990; Freeman and Newell, 1971; Mitchell, 1990; Reitman, 1964; Simon,
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1973; Yessios, 1987), focused on the development of a priori paradigms for design.  Major
cmphasis in this theoretical aspect was in representation of knowledge.  The third arca,
cducation, (Broadbent, 1973; Hanks, 1977; Jones, 19790; Wade, 1977) focused on the
development and advancement of design methodology, with emphasis on defining design and
how its related knowledge is used and how it should be practiced (Akin, 1986).

These studies pioneered the arca of knowledge-based applications to CAAD. and
individually. provide a valuable contribution to the study of this ficld. Thercfore, it is essential
that the development of a constraint-based modeler with foundations of knowledge application
take in consideration these studics. The implementation of a constraint-based solid modeler.
builds on thosc contributions in an ctfort to provide a functional, and workable, application of

design knowledge 1o aid in the CAAD development.

1.4 Goals and Expectations

The application of design knowledge to the ircractive modeling process as illustrated
and presented, takes into account the work of carly and current pionceers in the arca of CAAD.
The goal of this thesis was to develop a constramt-based solid modceler for architectural
applications which can be utilized as a tool for Computer-Aided Architectural Design by
allowing lor the definition and implementation of specitic design knowledge which constrains
the behavior of user definable three-dimensional geometric entities. The development of such 4
modeler was 10 be an extension to the existing cducational solid modcling program,
MacMod844, developed, and provided by the Department of Architecture, The Ohio State
University. The constraint-based solid modeler was expected 1o achieve four main objectives,
which when implemented, would achieve these goals.

The first objective, was to provide the ability o generate, represent, and manipulate
three-dimensional geometric entities through the use of a graphical interface. This includes the
facilities to store and support gecometric and topological cditing features at the point, segment,

facc, and volume levels. (Existing features of MacMod844 cducational modeler.)
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Secondly, the implementation was to allow for the specification of design knowledge
applicable to uscr definable three-dimensional geometric cntitics such as solids or spatial
representations.  This included the ability to define, modity, store, and retricve constraints
upon the environment as well as the individual entities.

The third objective was 1o provide the ability 10 manipulate the three-dimensional
geometric entitics in a manner which is consistent with the behavioral characteristics dictated by
the entity specifications. Thus, constraining the operations, scale, translaie, and rotate, to the
design knowledge specified for the entity.

Finally, the last objective was to provide the ability to extract information from an
entity, which has been provided by the specification of the entity, and the derivation of
information from the specifications and geometrical data.

The primary expectation of this thesis is to contribute towards the development of an
architectural solid modeler, which has the ability 10 represent information about a specific
entity. as a foundation for design rescarch, education, and practice.  Four main goals are
expected 1o be attained in this rescarch. One, o support the theoretical foundations which have
preceded this research. Two, to delincate and define the components of a constraint-based
solid modcler, including the representation of knowledge, problem solving process, and the
interaction between the designer and the modeler. Three, to implement and cvaluate such a
modeler.  And four, to provide a foundation for further rescarch and education in the use of
knowledge-based systems in CAAD applications.

By achieving the four main goals set forth, the constraint-based solid modeler for
architectural applications provides a designer with the ability to utilize and apply a small
domain of design knowledge interactively in the generation and manipulation of architectural
clements, thereby, providing a dynamic and interactive modeling environment which is
behaviorally constrained.

The remainder of this thesis explores and illustrates the functional constraint-based

operations which were implemented in the modeler, a system overview and user's manual to
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C*Mod, the application of the constraint-based solid modcler, the internal workings and
algorithms used to implement the constraint operations, applications of the working program,
extensions and future directions 10 be explored. and finally conclusions surmised from the

research and implementation.



CHAPTER 11

CONSTRAINT-BASED MODELING OPERATIONS

The realistic generation and manipulation of solids and spaces in an interactive
environment requires the use of specific information pertaining to the entities themselves and o
the interactive behavioral attributes between entities.  To facilitate this realistic interaction of
entitics, two types of information arc required, physical and relational attributes. Physical
attributes such as representation, dimensional data, arca limitations, volumetric requircments,
rotational attributes and spatial mobility, are applicd upon the entity itself. Relational attributes
such as proximity critcria, containment characteristics, and associative attributes, arc applied to
entitics which interact with one another. By applying this specific information, the interactive
solid modceling process is constrained and limited 10 the bounds established. The results of this
application of specific information or knowledge about an cntity in an interactive solid
modeling environment is a constraint-based solid modcler.

Allowing for the definition and implementation of specitic design knowledge which
constrains the behavior of user definable three-dimensional entities is critical to a successtul
implementation of constraint-based solid modeling. A constraint-based solid modeler must,
therefore, provide four primary operational capabilitics: 1) The ability to specify the design
knowledge applicable to user definable threc-dimensional entities such as solid and spatial
entitics. 2) The ability to modify, store, and retricve the entity specifications provided through
knowledge specification. 3) The ability to manipulate the three-dimensional entity in a manner
which is consistent with the behavioral characteristics dictated by the entity specifications. 4)

The ability 1o extract, or query, information from an entity which has been provided by the

11
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specifications of that entity. This chapter explores each of these primary operations in order to

illustrate the role each must play in the interactive modeling process.

2.1 Knowledge Specification

The foremost important ability of a constraint-based solid modcler is to specify and
distinguish specific information pertaining to an entity. Information, or design knowledge
which is typically represcented graphicallv, as illustrated in the figures below, must be specitied
by the uscr, or read from a data base containing the required information, and made available o
the modeler. An interactive method of communication between the user and the sysiem allows
the user to input specific design knowledge applicable to a specific entity, or to an environment
which is to be modeled. The modeler, once the design knowledge is present, can utilize this
information to aid in the process of interactive modeling by providing the lower level

satisfaction checking to cnsure that the requirements sct forth are met.

Soitd No Offset
Requrred
Hexght Heght
Lim#ations Limtatons Obm
Fixed in
Objec] to Attract 3 Space
Setbacks ~ Similaf Objects
Maxmum p Maximum
Length Length
Figure 9. Design knowledge of a space. Figure 10. Design knowledge of a solid.

2.2 Knowledge Manipulation

The specification of information, or design knowledge, is the initial step in conveying

the scenario in which the modeling cnvironment is to be constructed. Once the specific entity
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design knowledge has been provided, a constraint-based solid modeler must provide the ability
10 manipulate that information. This includes the ability to modify. store, and retrieve the
entity specifications which have been specitied. By allowing the user to modify constraints, or
information particular to a specific entity, the environment can remain dynamic in nature. This
flexibility provides a method of constraint resotution in which the user can choosce 1o apply or
disregard a particular constraint during the interactive modcling process.  Additionally, by
allowing a sct of constraints to be stored and retricved, a preset description of entities, or entity
types, can be applied to the modeling environment without having to specity the entire set of

constraints again (figurc 11 and 12.)

Min/Max

MinMax I\
Height
\

~

« Max Length
MinMax / Min Length Min/Max /
Width Width
Figure 11. Constraints upon a single Figure 12. Preset constraints applied to all
entity and stored as a brick definition. subsequently generated entities.

To allow for this flexibility, two types of constraint knowledge are o be represented.,
entity specifications, and system specifications.  Entity specification is the set of
constraints/attributes which pertain to a specific entity. It is that set of specifications which
control the operations involving that entity. The second form is system specifications, or

system defaults. This set of constraints/attributes are what the system uses when a new entity
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is created. Both sects are accessible to the user at any given time. By allowing this
manipulation of information, the user has the flexibility to control knowledge about a specific

entity and the system specifications.

2.3 Constraint Modeling

The purpose of a constraint-based solid modeler is to provide an environment in which
the designer can interactively gencrate and manipulate solid models for architectural
applications which follow behavioral patterns established by the specification of design
knowledge as constraints. Additionally, once the constraints have been established, the user
should be free 10 explore possible solutions within the constraint limitations, without having to
constantly check for compliance with a particular attribute or value. To accomplish this, three
levels of constraint modeling are required to be provided: entity | relational | and identification.
The entity level applies to the physical characteristics of the entity and relates 1o the generation
and editing of solid objects. Interactive relationships between entitics make up the relational
level, and apply to the geometrical transformations of translation, rotation, and scale. The final
level of identification is required to distinguish the difterences between entities, and provides
the ability to store and retrieve the constraint set. The following discussion claborates on cach
of these levels, and includes an illustration of the major attributes which provide the ability to

interactively model constraints.

2.3.1 Entity Characteristics

Entity characieristics arc the specific physical attributes which the entity is required to
satisty during the generation and manipulation of the entity in the threc-dimensional modcling
process. The physical attributes provide a rcalistic representation of a narrow spectrum of
design knowledge upon a specific entity.  For the purpose of illustrating the constraint-bascd

solid modeling process, five major physical attribuies have been chosen: spatial represcntation,
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dimensional attributcs, spatial characteristics, re.tational attributes, and mobility characteristics.
Although an unlimited number of descriptive information can be obtained and applied to the
generation and manipulation of geometric entities, these five physical attributes represent a
selection of primary characteristics which govern the creation of physical objects.  The

following is a discussion of cach of the five physical attributcs.

2.3.1.1 Spatial Representation

The fundamental object description/constraint is found in the spatial representation
attribute. By denoting an object as a solid cntity, the modeler must perform operations on that
entity as a solid. Thus, a solid is expected to behave as a solid entity, and a spatial entity is
expected to behave as a spatial container of other entitics.  The distinction between the two
representations lies in the ability to contain mass. Solid elements arc just that - solid - they
contain mass, and cannot be occupied by another entity containing mass. Spatial clements do

not contain mass, they are composed of space, or a spatial void, and have the ability to contain

Poetrve faces on intenor of entity
Surtace Normais Pointing snward

v
a
SPACE '\ + v
s v
-t st
Postive taces on extenor of enttty
Surtace Normais Pointing Outward A\ 7Y
SOLID
Figure 13. Representation of a solid Figure 14. Three-dimensional representation
entity and a space entity. of solids and spaces.

other entitics such as spaces or solids. Figures 13 and 14 illustratc the physical and visual

differences between a solid and spatial entities. As a fundamental characteristic of constraint-
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based solid modeling, this ability to distinguish between spaces and solids interactively
provides a strong foundation to utilizing design knowledge within an interactive environment

which allows immediate feedback to entity interaction.

2.3.1.2 Dimensional Attributes

Dimensional attributes constrain the generation of entities, specifically extrusion, as
well as the geometric editing features of the modeler. The application of dimensional data must
be capable of supporting editing of all topological levels: point, segment, face, and object. To
facilitatc this characteristics in an interactive environment, a bounded box dimensional
restriction upon the gencration and manipulation of the entity must be provided (figure 16).
The bounding box method maintains the dimensional information regardless of the etfects of
3D transtormations such as scale, rotation, or translation. and regardicss of the topological
level on which the operation is being conducted (figure 17). Retaining the dimensional data in
this way allows the user to specity the minimum, maximum, and incremental dimensional
constraints upon a gcometric entity.  Each of these values may be set and activated for the
width. height, and length auributes independently or in combination.  Figure 15 illustrates the
minimum and maximum values cstablish a range of allowable values to be used during the

modeling process.

1HOISH

BOUNDING BOX

LHDIEH

Figure 15. Visualization of the width, Figure 16. Three-dimensional representation
length, and height dimensional criteria. of the bounding box and dimensional data.
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enbes with the rephication feature
active in the width constraint

Figure 17. Bounding box and solid entity in Figure 18. Replication of a solid entity
three space. in the width dimension.

Simply restricting the operations to maximum dimensional limitations doces not fully
capitalize on the nature of dimensional data. Modular construction, such as kitchen cabinetry,
utilizes dimensional data to indicate when another module should be generated. The cabinets,
for example. would split or replicate when they are extended beyond a particular dimensional
limitation. To support this type of design knowledge, the modcler must allow the user to
specity a replication threshold, and replicate the entity when generation or manipulation
extends beyond this threshold.  With the replication feature disabled, the generation and
manipulation of the entity is constrained to the limits imposed by the minimum and maximum
dimensions provided. Incremental rubber-banding, scaling, and translation will be snapped to
the increment value provided. When the replication feature is enabled, however, the maximum
value becomes a threshold value used to invoke replication.  Extending beyond this maximum
value will result in the creation of an additional clement with the same constraints and

attributes, thus replicating the entity (figure 18).

2.3.1.3 Spatial Characteristics

Spatial characteristics impose similar constraints to the generation and cditing features

of the modeler as do dimensional attributcs. In addition to, or in licu of, dimensional
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auributes, spatial constraints of arca and volume may be required.  Providing spatial
constraints would limit, or restrict, the generation and manipulation of the entity based upon
minimum and maximum square and cubic units of measure, thereby allowing the definition of
room size in square units, or spatial size in cubic units (figures 19 and 20). A minimum value
would establish the smallest area or volume that entity may possess, and require the modeling
process 10 maintain this minimum value. A maximum value would cstablish the largest arca or
volume that entity may possess, and would be used to limit geometric editing operations upon
that entity. Since most applications of spatial critcria utilize an orthogonal configuration, the
modcler must provide an option which allows the user to specify whether or not to constrain
the entity to this orthogonal continuity during transformations. A constraint-based solid
modeier could therefore allew interactive solid modeling of programmatic requirements

maintaining this informati.. during the process.

ENTITY

ENRTY
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AXS the entlly serves as the polygon for 1o the reference piane trmes the heght
area cakculations perpendicular to the reterence plane
Figure 19. An illustration of the area Figure 20. An illustration of the volume
characteristic. characteristic.

2.3.1.4 Rotational Attributes

Rotational attributes effect the geometric cditing feature of rotation.  This becomes
important when one considers, for ¢xample, the placement of cntities which can only be

configured at right angles within a space. By constraining the rotational level and degree of
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rotation which can be imposed during the geometric editing operations, these restrictions can
be represented in the interactive modeler. In order to facilitate this constraint two types of
specification must be allowed, level, or axis of rotation, and increment, the degree of rotation
allowed. Specitication of the level of rotation would provide the selection and indication of
allowable rotation in three-space, and would include activation and limitation of cach of the
three major axis. Indication of the rotation increment, in terms of minimum and maximum
values, would provide the allowable range of rotation from 0 to 360 degrees in right-handed
space (figurc 21). In addition, the rotational increment would constrain the incremental
rotation about the selected axis. Thus, an entity can be restricted 10 z axis rotation at 45 Jegree
increments (figure 22). Implementing this characteristic would provide an environment in

which entities can be constrained or limited 10 specified locations or configurations.

270
Rotation about the Z axis

Figure 21. Visualization of the limits Figure 22. Example of an object rotated
on the x-y reference plane. about the origin, constrained to limits.

2.3.1.5 Mobility Characteristic

Mobility characteristic's establish the degree of interaction the clement will exhibit
when acted upon by another clement and provides the ability of rigid placement within three-
dimensional space. A primary usc of the mobility characteristic is to fix the location of an

entity so that the interaction between other elements will not cause the entity to transiate from
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its position. Once an object is placed in the modeling environment, it may become necessary 10
fix, or frecze, it's position, as in the placement of a wall, stair, column. or any construction
component. A fixed entity therefore becomes an obstacle which, when interacted upon by

other entities, will restrict, or limit there movement (figure 23).

Intersction with a translating
Entity and an enity with fixed

B.

Figure 23. [lNustration of an interaction between a translating entity
and an entity with fixed mobility. A. Indicates the position prior to
translation, illustrating the path of travel. Note the the object must
travel around the object. B. Indicates the result of the interaction.

An entity with a mobility characteristic of free, however, is not confined or restricted to
a particular location in three-space.  Free mobility cnables the entity 1o respond 10 the
interaction of other clements in accordance with the expected behavioral patterns established
through the specification of other constraints (figure 24). The mobility characteristic docs not
cffect any geometric or topological generation or editing feature directly. It does, however,
cffect the resultant activity from associative relationships and manipulation of other entitics
which will be discussed in section 2.3.2.3.

Used in combination with the spatial representation characteristic, the mobility
characteristic is the second most important feature an interactive constraint-based modeler must
possess. These two characteristics alone can model, through direct response in real time, the

interaction of solid objects in three-dimensional space.
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Intersction with s transiating
Entity snd an entity with free

Al Transiating entrty B.

Figure 24. [llustration of an interaction between a translating entity
and an entity with free mobility. A. Indicates the position prior to
transtation, illustrating the path of travel. B. Indicates the result of
the interaction.

2.3.2 Relational Characteristics

Relational characteristics are attributes an entity possess which indicate how that cntity
is 1o interact with other cmitics.  Three relational attributes, proximity relationships,
containment relationships, and associative relationships, used scparately, or in combination,
are required in order o provide additional behavioral constraints upon the manipulation of the
entity within the modeling environment. The following is a discussion ol cach of the three

rclational characteristics.

2.3.2.1 Proximity Relationships

Proximity rclationships establish a zone around, tor solid cntities, and within. for
spatial ¢ntities, the entity which provides and acts as a buffer, or clear zone between the entity
and any other entity. This zone provides the minimum distance in which other entitics may
encroach upon, as well as the distance criteria for proximity detection and activation of
associative responses (refer to section 2.3.2.3). A bufter zone is created by cstablishing an
offsct from the bounding box based on the width, length, and height distance from the entity,
and is 10 maintained regardless of the geometric transformations applied upon the entity (figure

25). Therefore, a specification of an offset along a particular edge, such as the width edge,
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must be maintained throughout the modeling process.  The use of a bufter zone, or offset,
allows the modeler to represent non-physical entitics such as distances between tloors, or can
act as physical representations such as mortar between brick entitics. A modeler can therefore
act as an abstract representation of design clements and can provide the ability 1o use design

knowledge in an carly stage of the design process.

Proximity Detection
Intersection of two
proximry butfer zones

Maximum closure
arstance. Soid
Entities cannot
enter this bufter zone.

Figure 25. An example of the proximity zone and it's relationship
with the entity. A. IHustrates the buffer zone around the entity. B.
[Nustrates the offset created between three entities. C. illustrates
when proximity detection occurs.

2.3.2.2 Containment Relationships

Containment establishes the relationship between dissimilar spatial representations. A
heiarchical relationship can establish constraints which effect the extrusion, scale, rotation. and
translation of cntities, and will restrict such operations on subordinate entitics to the limits of
the bounds of the spatial cntity (figure 26). This has the effect of enclosing entitics within
spaces, such as the design space illustrated in chapter I, and ctfectively constraining the
interaction and manipulation of cntitics within that spacc. Depending upon the spatial
representation given to an object, the modeler should provide sceveral options o the user.

These options must include no containment, solid contained by a specitied volume, or a spatial
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entity which contains user specitied solid entitics. No containment allows the entity to be non
restricted in any space. If containment is desired, the entity must belong to a spatial entity, and
thus contained by that entity, or contain solid entities, depending on the spatial representation.
It is important to note that in the event that a solid entity has no containment relationship
between a spalial entity, the solid entity should have complete freedom to penctrate or exceed

the bounds of the spatial entity, and thus is not be restricted or contained by the spatial catity.

Solid entity is constrained -
to the limits of the spatial
entity

SPACE =i SPACE

P
SOLID ENTITIES HIEARCHICAL STRUCTURE
CONTAINED BY A SPACE OF CONTAINMENT RELATIONSHIP

Figure 26. Example of the containment relationship and it's
interaction between entities.

2.3.2.3 Associative Relationships

Associative relationship cstablish the response an entity will exhibit during the
interaction between itsclf and another entity.  Utilizing an offset tolerance from the proximity
zones for cach entity, the interaction between two or more entities is affected by their
associative relationship indicated, and respond in one of three actions, no response, repel or
back away, or attract and attach. No relationship would indicate that there is no inherent
association required for that entity. A repelling relationship would indicate that the object will
oppose, or repel another entity encroaching within the tolerance. Attracting relationship
indicates that the object will attract, or try to autach itsclf, o another object encroaching within

the tolerance.
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The associative relationship utilizes the mobility characteristic of the secondary entity,

or the entity which is being acted upon, as a basis o determine the type of response the entity
is 1o exhibit. It no associative relationship between the entities is desired, the cntitics must
behave in 2 manner which is consistent with solid objects. However, if an association is
established, and depending upon the mobility definition of the secondary entity, the associative
response will be enacted by the interacting entity or by the secondary entity. The associative

relationships cffect all transformations, scale, rotation, and translation, interactively, and must

Attached AssoGiation/

free Mobility Characteristic RESULTS
&

Translating Entity

Entity Attached
and Transtated

Reterence Pont
B.
Figure 27. Example of the attract association and secondary entity with

free mobility. A. Indicates the position prior to translation, illustrating the
path of travel. B. Indicates the result of the interaction.
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Reterence Point
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Figure 28. [FExample of the attract association and secondary entity with
fixed mobility. A. Indicates the position prior to translation, illustrating
the path of travel. B. Indicates the result of the interaction.
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Repel Assocation;
FREE Mobiity Charactenstic Entrty Repelied
p RESULTS and Displaced

Figure 29. Example of the repel association and secondary entity with free
mobility. A. Indicates the position prior to translation, illustrating the
path of travel. B. Indicates the result of the interaction.

Repe. Association/
FIXED Mobrity Characteristic

RESULTS Entty Unchanged

fT ransiating Ertity
A. Transiation path restricted B.

Figure 30. FExample of the repel association and secondary entity with
fixed mobility. A. Indicates the position prior to translation, illustrating
the path of travel. B. Indicates the result of the interaction.

provide an immediate visual feedback to the user during the modcling process. When any of
these operations are performed, and the resulting activity causes the entity to encroach upon the
tolerance of another entity, the entity will behave accordingly, depending upon the mobility
characteristic of the entity. Thus an entity with an associative relationship of attract, meets a
fixed entity, the entity will snap to the edge of the secondary cntity. In the event that the

sccondary entity was free, it would snap to the edge of the primary entity (figures 27 and 28).
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For the repel association, an entity which meets a fixed entity will be repelled, or pushed away
from the secondary entity. Conversely, if the secondary cntity was tree, it wouid be repelled,

or pushed away from the primary entity (figures 29 and 30).

2.3.3 Identification Characteristics

The identification attribute allows the unique identification of a sct of constraints which
have been established for a given entity. This type definition attribute is required when storing

and retrieving constraint information.

2.3.3.1 Type Definition

This is a unique identifiable descriptive attribute associated to the sct of constraints
representing an entity.  The specification of a type definition to a specific set of constraints
provides the capability to store and retrieve the entire set of constraints will a single identifying
macro (figure 31). By allowing the sct of constraints to be identified as a single type
definition, the sct of constraints can be created and stored once. and then retrieved and
assigned to cntities with a single reference indicating that type.  This ability to assign a
complete sctof constraints with a single reference allows quick and cfficient use of the design
knowledge about cntity types without specific knowledge about ali the particular attributes

required to represent that type.

Office 1
— Office 6
Lobby Office 5
Service Corridor - Office 4
Fubiic Toilets
Building Entrance Reception

Building Envelope

Figure 31. An illastration of the type definitions.
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2.4 Knowledge Query

The last of the primary operations involve the ability 1o extract or query the modeler for
information pertaining 1o a specific entity. This specific knowledge pertaining 10 an entity must
be supported in two forms, defined and derived. Defined information is specific knowledge
pertaining to an entity which has been defined or stored as a set of constraints. This type of
information should be readily available in the interactive modeling process and accessible
without excessive disturbance to the process. The second type, derived, should allow the user
to retrieve specific knowledge about the entity which has been derived, or determined from the
design knowledge specified and the geometric data of the entity.  Information pertaining to
derived knowledge includes square footage, volumetric data, actual dimensional data, and
location data. This form of communication between the user and the system would allow
immediate checking and verification of the design knowledge relating to any specific entity in
the modeling environment. In addition, it allows the user to question the response of the

constraint-based solid modeler. and determine why a particular action was taken.

2.5 Direction

From the discussion and illustration of the primary opcerations which should encompass
a constraint-based solid modcler, it is evident the use of design knowledge in combinations, or
separately, provide the designer with a valuable tool in the design process. This tool can
provide the user with the ability to generate and manipulate design knowledge to dynamically
constrain, with realistic information and results, the process of solid modeling. The interactive
generation and manipulation of solid clements within design knowledge will allow an efficient
and expedient method of spatial, or mass. modeling and would be able to provide a powerful
foundation to schematic and conceptual design.

The next chapter introduces C*Mod, an prototypical interactive constraint-based solid

modeler which provides a demonstration of the viability of many of the concepts presented.




CHAPTER HI

C-MOD - SYSTEM OVERVIEW AND USER'S MANUAL

The prototypical constraint-based solid modeler, C*Mod, was writtcn and developed as
an extension to the MacMod844 shell provided by the Department of Architecture, The Ohio
State University, and currently runs of the Apple® Macintosh® platform. C*Mod provides an
environment in which the designer can interactively gencrate and manipulate solid models for
architectural applications which foilow behavioral patterns established by the specitication of

design knowledge as constraints. Additionally, once the constraints have been established, the

€ File Edit Height Diews Modes Options

Figure 32. C+Mod prototypical application.
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user is free to explore possible solutions within the constraint limitations, without having to
constantly check for compliance with a particular attributc or value. The following chapter
includes an introduction to the C*Mod prototypical application, an overview of the menu and
command structure, a briet discussion of the basic capabilities of the solid modeler, and a full
description of the constraint-based operations. The goal of this chapter is to provide the reader

with the interface, characteristics, and use of C*Mod.

3.1 Introduction to C+Mod

C*Mod is an interactive constraint-based solid modeler which predominantly
communicates with the designer in a manner which is consistent with the way most designers
communicate, graphically. A user has the ability 10 generate and manipulate solid clements
graphically, with the usc of the mouse, and can visualize the results interactively.  This section
introduces C*Mod, discusses how 10 activate the program, and illustrates the navigation

through the menus, icons, and windows utilized by the application.

3.1.1 Activating the program

CeMod utilizes the basic method of program activation suitable for the Apple®
Macintosh® operating system. It is assumed that the reader is familiar with this operating
system, and is comfortablc with the point, click, and drag method of mouse communication.
The program supports three icons used to represent specific information; application icon,
project files, and constraint types (figure 33). CeMod is started by double clicking the

application icon.

s 2

A.  CeMod B. project file C. definition

Figure 33. C-Mod icons. A) C*Mod application, B) project files, C) constraint types.




3.1.2 Graphical Environment

Upon start-up, the program will display the graphical environment and is ready to
begin a session. Since there are a number of unique features to C*Mod, this section explains
the graphical environment and discusses the navigation of the screen.

C+*Mod consists of four basic parts, a menu bar, a graphic window, a message
window, and a tool box (figure 34). The menu bar provides access 0 the features and
operations of the program. The graphic window provides the visual communication between
the user and the application. It consists of a reference plane,which serves as a platform, or
drawing surface, and the three major axis, which serve as Cartesian coordinate references to
three-dimensional space. The third basic element is the message window used to communicate
textural information. The current cursor location is indicated in this window. The last major
clement is the ol box. The tool box provides access to specific features of the application

based on the current active mode of operation.

MenuBar — &' file Edit Height Uiews Modes Options E [
CeMod

' I

Reference Plane >

Z Axis

X Axis

Y Axis g]

Cursor

Tool Box

Graphic Window —— >

Current Cursor Location —» x -600 v -1320 7 00  KennethL Tobin, AIA
MessageWindow —— | »

Figure 34. C°Mod graphic environment.
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3.2 Overview of the Menu and Command Structure

The primary form of communicating instructions, or commands, to the program is
facilitated through the use of the menu bar (figure 35). The menu bar provides seven pull
down menus with which the user can select the various options and modces of operation
available. The pull down menus include the apple. file, edit, height, views, modes and an
options menus.  An overview of cach of the menu items is presented to briefly introduce the

user interface, and 1o illustrate the options or modes which are available under cach menu.

[ &% Fite Edit Height Uiews Modes Options |

Figure 35: The C*Mod menu bar.

3.2.1 The Apple Menu

The & menu contains the About Constraint Mod... command which displays a
dialog box with a briet description of the C*Mod application. This dialog box is purcly
informational, and docs not serve any other purpose in the modeler. To dismiss this dialog
box, simply click anywhere within the box. In addition, this menu aliows the user to utilize
the mutlifinder, if active, to access other programs, and allows access 1o desk accessories
which are currently loaded in the systems folder. Figure 36 illustrates a cut-away portion of
the apple menu. Figure 37 illustrates the dialog box which is displayed when About Constraint

Mod is selected.

Rbout Constraint Mod... Comstrmnt-Based CONSTRRINT-BASED SOLID MODELER
Solxd Modeler for
Alarm Clock v ARCHITECTURAL APPLICATIONS
E"""';' o= CoMI®El | mesis vsvsiopen in pert by xen Tobin
enves 2.1 0A ARCH 844.04 - Winter and Spring 1991

A | SN

Figure 36: Apple Menu. Figure 37: About Constraint Mod dialog box.
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3.2.2 The File Menu

The File menu provides general file processing operations for the application (figure
38). Thesc include the ability to retrieve and store the project files, as well as quitting the
application. As previously mentioned, there are two file types used by C*Mod, project files
and constraint type files (figure 39). The file menu provides access only to the project files.
This is important (0 note when storing information. Project files contain all information
pertaining 10 a current scene, or environment. Whereas, only constraint type definitions are

stored in the constraint type files (refer to section 3.4).

N
Loed... «———+1—— Retrieves a stored file
tlpse N
save «———1—— Saves the current solid @
Nawe i , objects and constraints
Reurel to Napod TYPE
Print Setup... project file definition
Print
quit +——ugt——Quits C-Mod application

Figure 38: File Menu. Figure 39: File icon types.

The Save jtem activates the standard file dialog box (figure 40), which prompts the
user for a file name. In the event that the name specificd matches a file which cxists, the user
will be prompted to change the name or rewriting over the existing file. The file saved contains
all of the information required to create the scene, including the object data structures and the
constraint data structures.

The Load item activates the standard file dialog box (figurc 41), which prompts the
user 1o select a file from the listing of available files. The user can sclect the desired file by
double-clicking on the file name, or by clicking once on the name and selecting open.  In the

event the file desired is not found in the current folder, additional folders can be view by
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selecting the top file descriptor and dragging down the list of heiarchic i files. Access in this
mode is limited to {iles created only by the save item above while in this application.

The Quit item terminates the program. Note that quitting the program prior 10 a save
will not prompt for a decision to save or not. The program does not automatically save the

current set of data.

| St |
S CeMpit e FQ' > Tobin ~>Tobin
=
Save Enviornment fis:
[C-Mod.ﬂld j ("Cancet Cancel
Figure 40: Save file dialog box. Figure 41: Load file dialog box.

3.2.3 The Edit Menu

The Edit menu provides the means of controlling how the modeler is to pertorm in
three-dimensional space (figure 42). The primary means for this is through the selection of a
reterence plane which is used during the generation and manipulation of objects. In addition,
the cdit menu allows the user to clear the entire screen 1o begin a new session. The selection of
Clear Mem will crase all items form the graphics window. Note that the undo command is

not active, and will not perform any operations.

Estabtishes the x-y axis
as the current reference
plane.

Undo %2 Establishes the y-z axis
/ as the current reference
«H ¥ Plene
i X ¥ 2 Plane plane.
Establishes the x-z axis H 2 Plane
as the current reference

plane.

Clears the active memory,
and graphic window

Clear Mem

Figure 42: Edit Menu.
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The items X-Y Plane, Y-Z Plane, and X-Z Plane, sct the current active reference

plane accordingly. This is the controlling planc of reference for the generation, and
manipulation of entities within a three-dimensional space. In other words, it the active plane is
set to x-y, drawing a line in the three-dimensional environment will take place on the x-y planc.
This becomes important during geometric operations such as translation, which will perform
the operations parallel the active reference plane. To aid the user in distinguishing the which

plane is active. C*Mod displays a yellow grid indicating the plane of reference (figure 43).

Av T T T e s SR

Figure 43: An illustration of the reference planes viewed from 45-45 angle. A) lllustrates
the x-y plane. B) Illustrates the y-z plane. C) lllustrates the x-z plane.

3.2.4 The Height Menu

The Height menu provides a means of establishing the height, or the perpendicular
distance form the reference plane (figure 44). This menu provides the specific height value in
support of gencration operations. The values, ranging from 24 units to 240, establish a tixed

positive distance, and are consistent with the grid spacing indicated on the reference planc.

*————Height values used by the
system during the extrusion
process. Values are generic
units and represent one
increment of the grid spacing

Check indicates the current————»
active height value.

Figure 44: The Height Menu.




3.2.5 The Views Menu

The Views menu enables the user to view the three-dimensional modceling world from
a variety of positions (figure 45). By selecting the desired view ciyic, the application will
regenerate the scene from the specified angle, and will allow interactive modeling from that
perspective.  The menu provides three methods of viewing the scene, as an axonometric

projection, as a plan, or as an ¢levation.

Check indicates the current

view angle /Sets the angle of view
—_—> s 45 45 ;
135 45 accordingly.
Set the graphic window e :Z
to plan view. 30 60
60 30
R 80 20 .
Sets the graphic window. K ¥ View Sets the graphic window
to an elevation with x as V2liewte 10 an elevation with y as the
the horizontal axis. K2 Uew

horizontal axis.

Figure 45: The Views Menu.

The axonometric views are the first seven sclections in the menu, and arc indicated by
the numerical descriptions. The values stand for the degree of rotation about the z-axis and x-
axis respectively. To obtain a plan view, the selection of the x-y view will provide a projection
of the scene with a line of sight along the z-axis. The clevations are viewed by selecting the y-

£ view or x-z view. Figure 46 illustrates various views of the reference plane.

Figure 46: The effects of the view command on the reference plane. A) 45-45
axonometric view, B) X-Y plan view, and C) 30-60 axonometric view.



3.2.6 The Modes Menu

The Modes menu provides the user a method of activating the desired operations
available in C*Mod (figure 47). C*Mod currently supports ten modes of operation.  These
modes include two-dimensional drawing, three-dimensional extrusions, threc-dimensional
convergence, three-dimensional objects of revolutions, geometric editing, topological cditing,
texture mapping, void modeling, color surface shading, and constraint manipulation. The
tfollowing is a briet discussion of cach of the operation modes. In the cvent that more

information is required, section 3.3 claborates and illustrates cach of these operations.

Enables 2D drawing mode

Enables 3D sciid model
generation by convergence.

Enables 3D solid model
/ generation by extrusion.
2-D
vExtrude /

Enables 3D solid model
Converge / A ;
Revolve «— ] generation by revolutions.
G-Edit

TRt e—— ____ Activates topological editing

Activates geometric editin
capabilities

Uaid Model w__| capabilities.

Enables surface texturing.
Colors

vSet
inw-Modify |~ Enables Void model construction.

St;}!gpe\w‘
Retrieve Ty

Quer ™~ Activates the Constriant Mode.

Enables surface rendering
with a point light source.

Constraint Mode submenu.
see section 3.4,

Figure 47: The Modes Menu.

The basic operations of 2-D. Extrude. Converge, and Revolve, make up the generation
operations of C*Mod. With these operations the user has the ability to create two-dimensional
and three-dimensional forms. The 2-D mode of operation provides the ability to generate two-
dimensional objects on the active reference plane.  This mode allows line. and polvgon
drawing, and is used to aid in the generation of objects of revolution. The Extrude mode of
operation provides the ability to generate three-dimensional objects from a base drawn on the
active reference plane. Solid objects are gencerated in this mode. Converge is similar to the

extrude mode in that it gencrates three-dimensional objects from a basc.  However, the
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converge mode extrudes the object to an apex point at a height determined by the height menu.
This mode allows the creation of pyramidal solid objects. Revolve provides a method of
object generation termed objects of revolution. This mode of operation is performed on a pre-
generated two-dimensional object, and will generate a solid object by sweeping the form about
an axis. In this mode a sphere or torus can be gencrated.

The operations G-Edit, T-Edit, and Constraints, provide cditing featuics required to
control and manipulate an object in three-space.  G-Edit, or geometric editing, enables the
transformations and reformations of an entity in three-space. Editing in this mode include
point, segment, face, and object translation, as well as scale and rotation at the object level, T-
Edit, or topological editing, enables the insertion and deletion of points and segments into the
object itselt. Constraints provides the user with the ability to specify and manipulate design
knowledge. Refer 1o section 3.4 tor a complete description of this mode.

C*Mod provides two methods of rendering the object created, texture mapping, and
surface shading. Textures allows for the application of surface textures to be applied to the
object.  Textures include cross-hatching, stone, brick, and stipple. In addition o textures,
Colors provides a method of surface shading the object with a point light source. The effects
of each is to provide a more accurate visual representation of the object being modeled.

A final mode of operation allows the creation of building elements from the generation
of two-dimensional void representations.  Void Model allows the generation of a plan in
which doors and windows can be added.  From these two-dimensional representations, *he

uscr can create three-dimensional building models, as well as solid roof objects.

3.2.7 The Options Menu

The Options menu selection provides various options to the user 1o aid in the use of
the modeler (figure 48). These features aid in the drawing, visualization, and manipulation of

the object in the three-dimensional environment. Snap Line will snap the mouse selection to
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the next halt increment of the reference grid.  This allows direct placement of objects and
points without precise specification. Hide Back Face will render the scene with backfaces
climinated from view. Show Light Source will illuminate the scene and render the objects
with the appropriate surface color. Both options provide a visual cnhancement to the modeling
scene. Apply Constraints provides the user with the option to restrict the generation and
manipulation of the three-dimensional environment to satisfy all constraints specified. With
this option selected, the solid modeler becomes a constraint-based solid modeler. A final
option, Show Bounding Box, is used in conjunction with the Apply Constraints option.
This option renders the bounding box of the object, and color codes the edges (o indicate the

dimensional data used by the constraint mode.

Snaps the mouse selection
to the half increment of the grid.

Renders the scene wit
backfaces eliminated.

v$nap Line
Hide Back Face | Renders the scene with surface
Show Light Source 4 . .

pply Constraints shading techniques.

Applies the constriants s show Bounding Bow

on the modeling environment

Renders the bounding box
representation of the object.

Figure 48: The Options menu.

3.3 Discussion of Basic Capabilities

To gain an understanding of the basic capabilitics of C*Mod, it is appropriate to discuss
cach of the modes of operation in greater detail.  This discussion will illustrate the basic
features, concentrating on the modeling capabilitics, and will provide the reader with a better
understanding of the overall expectations in respect to the user interface, the various modes of
operation, and the diversity found in throughout the application.

Prior 10 the discussion of each of the basic modes of operation, it is necessary (0
understand the basic method of graphical interface with the system. As figure 49 illustrates,

the graphical enviroament is controlled through the use of the mouse. Lines are drawn simply
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by pointing at the beginning location, pushing the mouse button, dragging the mouse to a new
location, and again pushing the mouse button to completc the line segment. Other operations,
such as primitive generation, extrusions, convergences, and geometric cditing, require the
mouse button to be depressed while moving about the graphics environment. This method of
point, select, drag, and release, is prevalent throughout the modeler, and is utilized by every

mode of operation.

Figure 49: Basic user interface in the graphical environment.

From this point, the reader should be aware of the C*Mod environment, the menu
command structure, the file structure, and the basic operational interface. Further discussion
on these topics can be found in sections 3.1 and 3.2 of this chapter. The following section
presents cach mode in the order found on the menu. The icons presented are the ones found in
the tool box afier selection of the appropriate mode of operation. A bricef discussion of the
icons, as well as an example of the results produced are provided to illustrate the performance

expected within cach mode of operation.

3.3.1 Two-Dimensional Drawing

Basic line and polygon drawing can be performed in C*Mod under the 2-D mode of

operation. In this mode, the tool box contains cight primitives (figure 50). By selecting any
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one of these primitives, the user has the ability to generate two-dimensional objects. The 2-D
mode is seldom used for most of the modeling process. However, it is required when creating

objects of revolutions such as a torus or sphere.

<«———Single line primitve.

/\ |+<——Three-sided polygon primitive.
[J ¢ Four-sided polygon primitive
 |«+—Four-sided polygon primitive diamond.

bject drawn
O «—Six-sided polygon primitve. ih the single
O <——FEight-sided polygon primitive. Hexagor: drawn ~ mitive tool
() |<———Circle, eighteen-sided primitive. with the Six-sided
/ﬁ primitve tool.
a4

<«——Double line primitive.

L

Figure 50: The tool box of icons in the Figure S1: An example of drawing in
two-dimensional drawing mode. the two-dimensional drawing mode.

3.3.2 Three-Dimensional Extrusions

The most fundamenmal mode of operation in the modeler is that of extrusion.
Extrusions provide a quick and ctficient methe - of gererating three-dimensional entitics within
the modeler. Upon selecting the Extrude mode of operation, the system will display the
available primitives in the tool box (figure 52). By sclecting any of these primitives, the user
has the ability to generate solid objects using the boundry-representation method of solid
modeling. Figure 53 illustrates an example ol two solid objects generated in this mode. Note
the objects are surface rendered to provide a visual distinction of a solid clement.  With the
show light source option disabled, the modeler will display the objects as wire-frame

representations of the object.
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Wali created with the
double line tooi.

<«———Three-sided polygon primitive.
<——Four-sided polygon primitive
<———Four-sided polygon primitive diamond.
«—Six-sided polygon primitve.
<«——FEight-sided polygon primitive.
<«——Circle, eighteen-sided primitive.
<————Single line primitve.

<——Double line primitive.

<———0pen Box Primitive.

<—Closed Box Primitive.

Elongated cylinder
created with the

[@=oa 2200000 D]

circle tool.
Figure 52: The tool box of icons in the Figure 53: An example of creating
Extrude mode. solid objects in the extrude mode.

<«———Three-sided polygon primitive.
<«—Four-sided polygon primitive
<«——Four-sided polygon primitive diamond.
<« Six-sided polygon primitve.
<«———FEight-sided polygon primitive.

<«———Circle, eighteen-sided primitive.

000 0D

g Converged objeglefeated
’ with the Circlggfimitive.

Figure 54: The tool box of icons in the Figure §5: An example of creating
converge mode, solid objects in the converge mode.

3.3.3 Three-Dimensional Convergence

| The converge mode is similar to the extrude mode in that it creates solid objects from a

selection of primitives. However, in this mode of operation, the top face of the object is
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created at an apex point which results in a pyramidal structure. Upon selection of the converge
mode, the tool box will display the available primitives used to gencrate converged objects
(figure 54). In a manner similar 10 the extrusion mode, the user can casily generate the
pyramidal solid objects. Figure 55 illustrates an example of two solids generated through the
converge mode of operation. Once again the objects have been surface rendered 1o illustrate

solidity.

3.3.4 Three-Dimensional Objects of Revolution

Another method of generating solid objects is through the revolve mode of operation.
This mode allows two-dimensional objects to be used as templates to create solid objects of
revolution.  Upon selection of the revolve mode, the tool box with the tour options will be
displayed (tigure 56). In order for this operation o generate an object of revolution, a 2D
primitive must be present in the graphic window. After selection of the 2D object and an axis
of rotation, the modeler will generate the solid objects. Two examples are illustrated in figure

57. one of a torus, and onc of a sphere.

le————Full torus generation.

hg—.

Partial Torus generation.
e Full Sphere generation

le——— Partial Sphere generation

XX

Torus rendered with
faces reversed to
illustrate interior.

g Sphere created
| with revolution

operation.

Figure 56: The tool box of icons in the Figure 57: An example of creating
revolve mode. solid objects in the revolve mode.
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3.3.5 Geometric Editing

Geometric editing allows the modification of the geometry, or location, of any
topological level, point, segment, face, volume, of an object. In this mode the user can
translate, scale, rotate, and reform the object or parts of the object, along the active reference
plane (figure 58). The results are displayed interactively as the mouse moves over the screen.
This allows the object to "rubberband” or move as the mouse moves. Figure 59 illustrates a

segment being translated along the x-y reference plane.

An abject prior to
geometric editing.

r————Moves a selected point. %
le————Moves a selected segment.

l————Moves a selected face.

«————Moves a selected object. .
abject during

r+———Scales a selected object. segmem_editing.

Y

RELES

le——Rotates a selected object.
re—————8ingle reformation of an object.

le————Muttiple reformation of objects

] [“—~Activates the bounding box description.
| The results of

g geometric editing
of a segment.

Figure §8: The tool box of icons in the Figure 59: An example of editing
g-edit mode. solid objects in the g-edit mode.
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3.3.3 Topological Editing

Topological editing allows the user to modity the physical structure, or topology, of an
object. This type of editing enables the inscertion or deletion of points and segments into the
face or vertices of an existing object. By selecting the t-edit mode, the tool box will display a

selection of operations which will perform these functions (figure 60).  After selecting an
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operation, the user selects the desired location for the insertion or element for deletion. In the
event a valid selection was made, the system will perform the requested operation. Figure 61
illustrates an insertion of a segment into the face of an object. The segment has been translated

to illustrate the existence on the face of the object.

Object prior to
topological editing.

re———— Inserts a point into the object.
l«-——— |nserts a segment into the object.

+——— Not used.
Rgerting a segment

e d.
Not use into ke face of an

r«—— Deletes a point from the object.

————— Deletes a segment from the object.

[ Not Used.

KRBT DD

re————— Deletes an object.

Subsequent
geometric editing
@ of the inserted
segment.

Figure 60: The tool box of icons in the Figure 61: An example of editing
t-edit mode. solid objects in the t-edit mode.

3.3.7 Textures

Textures allows an enhanced visual representation of the solid objects by rendering
visiblc surfaces with an architectural pattern. This torm of surface mapping provides a few
basic rendering capabilities 1o the solid modeler such as cross-haiching and brick patterns. The
tool box (figure 62) illustrates the various patterns available to the user. A user can apply a
texture pattern to the visible surfaces by selecting the desired pattern and then selecting the
object to be rendered (figure 63). Since this is only a visualization technique, the patterns and
renderings, are not stored with the object, and subscquent manipulation of the entity, or any

F operation which refreshes the image, will cause the pattern to be erased.
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M*— Vertical hatching texture pattern.

«——— Horizontal hatching texture pattern.

l«—— Cross hatching texture pattern.
@ le———— Brick texture pattern.
H

L — Parquet texture pattern.
% l«———— Slanted hatching texture pattern.
a3 Stipple hatching texture pattern.

@n——-— Irregular stone texture pattern.

e——— Irregular cut stone texture pattern.

[*———Concrete texture pattern.

Figure 62: The tool box of icons in the
textures mode.

<+———Create void model.

0

<+———Move point or segment.

T

" | *———Not Used.

[ed
o

«—Insert window.

<«——Insert door.

«—— Delete wall, window, or door.

FRe@

<———Create a solid building model.

<«——Specify the height of the roof points.

<—Create a solid roof model.

(&

Figure 64: The tool box of icons in the
void model mode.

3.3.8 Void Modeling

AN ’
NN S
AN
NG NN 777

7%

Wall textured with
the brick pattern.

Figure 63: An example of rendering
solid objects in the texture mode.

the void model.

Void model of a hip roof.

Figure 65: An example of generating
a two-dimensional void model and a
solid roof element from the void.
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The void modeling mode cnables the user to generate and manipulate the axial skeletons

of a two-dimensional void representation. A void model differs from a solid model in that it
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defines an enclosed space. A wall, or enclosure is generated by deriving parallel lines to the
axial skeleton. This representation allows the efficient generation of architectural plans which
can be modified with the insertion or deletion of windows and doors as suited. Utilizing the
void representation of a plan, a solid object, or building, can be generated, complete with the
window and door openings. Additionally, the modeler has the capabilities to generate roof
entities from the same two-dimensional void model. Figure 64 illustrates the tool box after
selection of the void mode of operation. An example of the two-dimensional void model and a

solid roof entity arc illustrated in figure 65.

Grey surface shading. _ijecets surface shaded.

<«———Red surface shading.
<———Green surface shading.
<+«——— Blue surface shading.
<«———Cyan surface shading.
«———Magenta surface shading.
<«——Yellow surface shading.

<——Visual depth sorting of faces.

EELEELEEL

»?

“——Light source.

"
=
o
=

<+————-Color picker.

<
=4
-
“

Light source use
establish lightj ngle.

Figure 66: The tool box of icons in the Figure 67: An example of rendering
colors mode. solid objects in the colors mode.

(&

3.3.9 Color - Surface Shading

Surface shading provides the visualization of solidity. In the color mode, the user has
the option of sclecting and rendering the surfaces of objects. The colors available are indicated
in the tool box and allow the assignment of different colors to different objects (figure 66).

Unlike the texture option, colors are stored as part of the internal specifications of the object.
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In the event a rendered scene is desired, the option show light source will render all objects
with their appropriate color. An additional feature is the ability to change the direction and
placement of the light source. This allows the surfaces of the objects o be rendered in various

hues dcpending upon their angle with the light source.

3.3.10 Constraint-Based Modeling

The constraint mode of operations does not directly effect the modeling process itself.
It does, however, effect how an object will behave while being subjected to the previous
operations. This mode allows the user to specify design knowledge, or constraints, upon the
generation and manipulation of the entity including its interaction with other entitics.  Since the
constraint mode has scveral subordinate menu sclections and operations, a complete
description of the operations of constraint-based modceling are presented in section 3.4. To
acquaint the reader with the mode however, the tool box of the various constraints which can
be applied to the entity prior to, or after generation are illustrated in figure 68. In addition,

figure 69 provides an example of interactive modeling within dimensional constraints.

<« Spatial reprentation.

]| «————Dimensional attributes.

<«——Rotational attributes.

e
3

«— Spatial characteristics.

Mobility characteristics.

K% ul

Proximity relationship to entity.

N

<«——Associative relationship between entities.

<«———Containment relationship of entities.

5

<«——Type definition of entity.

g Sot for the entity..
Figure 68: The tool box of icons in the Figure 69: An example of editing
constraints mode. solid objects (g-edit) with apply

constraints active.




48

3.4 C*Mod Constraint Operations

C*Mod provides additional features which enable it to perform as a constraint-based
solid modeler for architectural applications. This modeler, which can be utilized as a tool for
Computer-Aided Architectural Design, allows for the definition and implementation of specific
design knowledge which constrains the behavior of user definable threc-dimensional entities.

The constraint-based solid modeler provides four main functional capabilities with
which the user may apply to architectural applications. 1) The ability to specity the design
knowledge applicable to user definable three-dimensional entities including entity, or physical
characteristics, relational characieristics, and type identification.  2) The ability to modily,
store, and retrieve the entity spcci-ficalionS provided through knowledge specification. 3) The
ability to manipulate the three-dimensional entity in a manner which is consistent with the
behavioral characteristics dictated by the entity specifications.  4) The ability to cxtract, query,
information from an cntity. or collection of entitics, which has been provided by the
specifications of that entity, as well as information derived trom the manipulation and creation
of the entity.  This scetion ¢laborates on the constraint operations introduced in the previous
section and includes a discussion of the sub-modes of the constraint operations complete with

illustrations of the application to the modeling process.

- Constraint Mode Sub-Menu
vEntrude

Converge

Revolve

6-Edit T

T-Edit Allows the specification and
Activates the Constriant Mode. Tentures editing of the system constraints.

Void Model

\ Colors .

Stores into "permanent’ memory set /AHOWS the display and
the constraint specification. —— View-Maodify madification of entity constraints.

Store Type
Retrieve Type
Quer!

~\Retrieves from "permanent” memory
a constraint specification.

Displays the entire set of
constriarts for a selected entity.

Figure 70: The constraint mode sub-menu.
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The primary operations of C*Mod are found under the Modes menu and are invoked

by selecting one of the five basic constraint operations which are provided as sub-menu items
under the Constraints selection (figure 70). Depending upon the selection, the appropriate

icons will appear at the left of the screen as previously shown in the tool box (figure 68). The

first five icons ( @ ) in the tool box represent the cntity characteristics,
the next three ( ) represent the relational characteristics, while the last (@ ) is

the identification attribute. By selecting any of the available icons, the user can activate the
appropriate dialog for that type of constraint, and interactively establish the criteria for that
constraint/attribute for any selected entity. Each of the nine icon selections is supported by this
form of interaction, and provides the user with the ability to set, view, and modity any of the

constraints for any of the entitics which have been created.

3.4.1 Set and View-Modify

To apply design knowledge to the interactive modceling process, that knowledge must
be specified and made available to the modeler. This constraint-based solid modeler provides
the knowledge specification capabilitics. and allows the uscr to input specific design
knowledge applicable to a specific entity.  This is accomplished by sclecting the Set  and
View-Modify options from the constraint sub-menu. The distinction between the two is that
Set applics 10 the system set of constraints used prior to the genceration of an entity, while
View-Modify applics to the entities set of constraints after it has been created.

Input of design knowledge is provided through a dialog between the user and the
system. Design knowledge includes information and constraints specifically applicable to
spatial and volumetric entitics such as a design space. 2 room description, or a building
description, and is the critical component in the interactive constraint-based modeling process.

Three types of design knowledge are represented, entity characteristics, relational
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characteristics. and identifying characteristics. The following is a discussion of each type of

constraints and their specific ficlds.

3.4.1.1 Entity Characteristics

Entity characteristics are the specilic physical attributes which the entity is required 10
satisty during the generation and manipuiation of the entity in the modeling process. Thewe are
five major physical attributes which constrain the modeling process, spatial representation,
dimensional attributes, spatial characteristics, rotational attributes, and mobility characieristics.
Each of the five entity characteristics, their dialog interface, and an example of the impact upon

the modeling process, are illustrated.

3.4.1.1.1 Spatial Representation

; Spatial Representation indicates the entity's general behavioral characteristic by

sclecting a solid or spatial representation through the dialog box presentied after
sclecting the spatial icon and clicking on the graphic window (figure 71). The distinction
between the two representations lics in the ability to contain mass.  Solid clements arc just that
- solid - they contain mass. Spatial clements do not contain mass, they contain space, or a
spatial void. It is important 0 note that solid entitics cannot contain any other cntities, while
spatial entitics may contain solid cntities. An illustration of the two types of representations are

shown in figurc 72. Note that the system default representation is a solid entity.

SPATIAL REPRESENTATION - ry
& [ o |
[
@SOLIDENTITY O SPRTIRL ENTITY (cance )
Solid

Figure 71: Dialog box for the spatial Figure 72: Ilustration of the solid and
representation constraint. space representation.
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3.4.1.1.2 Dimensional Attributes

“E@ Dimensional attributes indicate a bounded box dimensional restriction upon the

generation and manipulation of the entity (figure 73). The minimum, maximum,
incremental and replication values may be set and activated for the width, height, and length
attributes respectively. The minimum value cstablishes the smallest value that autribute may
possess and acts as the initial set of values during gencration. The maximum value establishes
the largest value the entity may posses and acts as the replication threshold when the replication
attribute is selected.  An increment value establishes the incremental snap between the
minimum values and the maximum values within the bounded box limitation. Replication will
allow the successive regeneration of an additional entity when the maximum bounds have been
cxceeded. The system defaults for the dimensional characteristics are no minimum or
maximum criteria, and no replication required.

As an aid in the visualization of the dimensional attributes , C*Mod provide a temporary
set of construction lines (figure 74). These construction lines illustrate the dimensional criteria
from the initial sclection on the graphic window. and can be removed by regenerating the

image on the screen.

Construction fines
>

DIMENSIONRL ATTRIBUTES s
Height UL Min Max Inc Rep "@
:\ ® Width 30| O
D, smnbalmlie] o
W a” @ Height @)
Length it 1ot [2a. J[o6. (30 ] (Ccancer )
Figure 73: Dialog box for the dimensional Figure 74: [llustration of the construction

characteristics constraint. lines provided to visualize the constraints.
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To illustrate the role in which the dimensional attributes perform in the modeling
process, a series of illustrations are presented. C*Mod interactively constrains the generation
(figure 75 and figure 76) and the manipulation (figure 77) of an entity by maintaining the
dimensional characteristic of the entity in a bounding box (figure 78). This is required in order
to maintain the dimensional data in three-space, and allows for the constraint 1o be applicable
regardless of subsequent editing of the entity. As previously discussed, toggling the show

bounding box option from the option menu will hide the bounding box trom view.

-X Y

/(

-z ~

Figure 75: An illustration of the interactive Figure 76: An illustration of an object
generation of an entity within a dimensional created within the dimensional constraints.
set of constraints.

//
P
L \>
2 N
Figure 77: Geometric editing within the Figure 78: Visualization of the bounding
limitations of the dimensional constraints. box method of maintaining dimensional

data.




53

3.4.1.1.3 Spatial Characteristics

Spatial characteristics provide in addition 10, or in licu of, dimensional attributes,

constraints of area and volume which may be imposed on the entity. This allows the
limitation of the generation and manipulation of the entity based upon minimum and maximum
square and cubic units of measure (figure 79 and figurc 80). The minimum value establishes
the smallest arca or volume that entity may possess. The maximum values establish the largest
area or volume that entity may possess. An additional feature, orthogonality, constrains the
entity to orthogonal continuity. The default values no arca or spatial restrictions. This
characteristic is not currently supported by C*Mod. The dialog box will appear, and design
knowledge can be added to the constraint data structure, but the mechanisms to constrain the

generation and manipulation have been considered part of the extensions to the modeler.

SPRTIAL CHARACTERISTICS

Min  ™Max

J Volume O Orthogenal
Min Mau 0K ]
@ O Rrea Q Orthogonal

HEIGHT

VOLUME of Entity

AREA of Entty

Figure 79: Dialog box for the spatial Figure 80: Illustration of the application
characteristics constraint. of spatial characteristics to the object.

3.4.1.1.4 Rotational Attributes

@ Rotational attributes provide the means with which the entity can be constrained to a

rotational Ievel and degree of rotation during the geometric editing operations (figure
81). The level of rotation allows the sclection and indication of allowable rotation in three-
space, and includes activation and limitation of cach of the three major axis (figure 82). The
minimum and maximum values indicate the allowable range of rotation from 0 to 360 degrees

in right-handed space. Additionally, the incremental degree of rotation about each axis can be




54

set. Default values for the rotational attributes are complete rotation about cach axis with no

restrictions. Although not implemented in this version of C*Mod, facilitics for it's extension

have been provided.

AGTATIONAL ATTRIBUTES
4 Rotate @ Min Man Inc Aing @
Qv 0.0 w0
! 02

Figure 81: Dialog box for the rotational
attributes constraint,

3.4.1.1.5 Mobility Characteristics

-] =

Figure 82: [llustration of the application
of rotational attributes to the object.

8 The mobility characteristic establishes the degree of interaction the clement will exhibit

when acted upon by another element.  Fixed mobility will not allow the ¢lement to

rcact when iteracted upon by another clement, but remains fixed to it's existing location.  The

reaction is translated to the interacting clement.  Free mobility allows the element o be {recly

acted upon by another clement, and reaction is exhibited by the element itself. Upon sclection

of the mobility icon, and then selecting either the system or entity. C*Mod will display the

mobility dialog box (figure 83). The user toggles between the two choices establishing the

mobility characteristic for the selected entity. The detault for this attribute is free mobility with

no restrictions.

Since the mobility criteria tixes an object is three-space, the cffects ot this specifications

are visualized during the geometric editing of other entitics.  To illustrate this, two objects are
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given opposite mobility characteristics (figure 84). The interactive manipulation of the free
entity which causes it to interact with the fixed entity will not be allowed (figure 85).
Conversely, translating the fixed object, (this is allowed since the mobility characteristic effects
the behavior of other objects) in a manner which causces it to interact with the free object will
result in the translation of the free object (figure 86). In effect, solids are moving solids, they

cannot intersect when in the constraint mode,

MOBILITY CHARACTERISTIC

Fof =

0K

O FIKED MOBILITY @ FREE MOBILITY CANCEL

Figure 83: Dialog box for the mobility Figure 84: Assignments of the mobility
characteristics constraint. characteristic of two solid entities.

-z

Figure 85: An illustration of the dynamic Figure 86: An illustration of the dynamic
interaction between an object translating in interaction between am object translating in
three-space which confronts a fixed object. three-space which confronts a free object.
No further translation is allowed. Both objects translate in the same direction.
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3.4.1.2 Relational Characteristics

Relational characteristics are attributes the entity possess which indicate how that entity
is to interact with other spatial entitics. Three relational attributes, proximity relationships,
containment relationships, and associative relationships, used separately, or in combination,
constrain the manipulation of the entity within the three-dimensional modeling cnvironment.
The tollowing is a discussion of each of the three relational characteristics, and provides an

illustration of the effecis upon the modeling process.

3.4.1.2.1 Proximity Relationships

@ Proximity relationships establish an oflset zone around, for solid entities, and within,

for spatial entitics, the entity which provides a bufter, or clear zone, which cannot be
encroached upon by any other object. A butter zone is created by cstablishing an offset from
the bounding box bascd on the width, iength, and height distance from the entity. By utilizing
an oftset from the bounding box of the entity, the proximity data can be maintained in three-
space regardless of the subsequent editing of the entity. The default is no proximity criteria
specitied. Upon sclecting the proximity icon from the ool box. and the desired entity, the user
can indicate the required offset in the width, length, and height dimensions.  Figure 87
indicates the dialog box when a solid object is selected, and figure 89 indicates the dialog box
for spac: entitics. Note the difference between the two, a solid has an exterior proximity
distance, while the space has an interior proximity distance.

1o illustrate the cftects on the modeling process, cach case, solids and spaces. are
graphically represented with and without a proximity zonc cstablished.  Figure 88 illustrates
how a proximity zone cffects the relationship between solid entitics.  Figure 90 illustrates how
the proximity zone cffects the relationship between solids and spaces.  The use of the
proximity zone allows the user to establish a set-back, such as a zoning restriction, or offset,

such a a ceiling to floor distance criteria, constraining the interactive modeling process.
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Proximtty offset
of 12 units.

PRORIMITY RELATIONSHIP:SOL 10S ‘@

-4 + Wwidth

Height
H width

@ SOLIDS: Width[1Z. |Length[12. |neight[0.0 |

Figure 87: Dialog box for the proximity Figure 88: The interaction between entities
relationship for solid entities. with and without proximity relationships.

PROHIMITY RELATIONSHIP: SPACES @
|
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Hei ﬂ( Width —
eight ( - oK J

Length Length
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paration.
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Figure 89: Dialog box for the proximity Figure 90: The interaction between a space
relationship for space entities. entity and two solid entities. The space

has a proximity offset established in the
width direction only.

3.4.1.2.2 Containment Relationships

@ Containment relationships cstablishe the relationship between  dissimilar  spatial

representations.  Depending upon the spatial representation given to an object, the
available options will be either no containment and solid contained by a specified volume, or

no containment and a spatial cntity which contains user specificd solid entitics.  No
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containment allows the entity to be non-restricted in any space. If containment is desired, the
entity can belong to a spatial entity, and thus contained by that entity, or contain solid entities,
depending on the spatial representation. The default, regardless of the spatial representation, is
no containment.

Upon selection of the containment icon, the system will prompt the user for
information through a dialog box. Figures 91 and 92 illustrate the difference between the
containment dialog for a solid and a space. The implementation of the containment relationship
has been left as an extension to the C*Mod application. Therefore, the dialog boxes have no
applicabie use at the current time. It is important (o note that spaces currently have the ability to
contain solid cntities, and will restrict the gencration and editing of the entity to the bounds

established for the space entity, as illustrated in figure 93.

CONTRINMENT RELATIONSHIP: SOLIDS CONTRINMENT RELATIONSHIP: SPRCES
<3 2
O Contains: % N
@
- =) o)
Not Contained O Contsined by: -
9] CANCEL CANCEL

™ by any entity [: (O No contained entities C———j

Figure 91: Dialog box for the containment Figure 92: Dialog box for the containment
relationship for solid entities. relationship for space entities.

SPACE

SOLID ENTITIES HIEARCHICAL STRUCTURE
CONTAINED BY A SPACE OF CONTAINMENT RELATIONSHIP

Figure 93: An [llustration of the containment constraint on the modeling process.
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3.4.1.2.3 Associative Relationship

5 Associative relationships establish the response an entity will exhibit during the

interaction with another entity. Unlike the mobility characteristic which effects the
physical interaction between entities, the associative relationship effects the spatial relationship
between interacting entities. Utilizing an offset from the proximity zones for cach cntity, the
interaction between two or more entities will be affected by their associative relationship
indicated, and respond in one of three actions, none, attract, or repel (figure 95).  No
relationship indicates that there is no inhcrent association required for that entity.  Attracting
relationship indicates that the object will attract, or try (o attach itself, to another object which
approaches the tolerance offset. Repel relationship indicates that the object will oppose, or
repel another entity which approaches the tolerance offset. Upon selection of the association
icon, the system will prompt the user o make a selection between the three options, and then
indicate the type of entity which the association is to be applied (figure 94). The sclected
association will be applied to the interaction between the entity and all entities of the sclected

type.

Associative relationshi
and the mobility v
characteristic d
response.

RSSOCIATIVE RELRTIONSHIP S

. li.
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Type: System

Distance Tolerepce is
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zone.
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Figure 94: Dialog box for the associative
relationship between entities.

Figure 95: The offset from the proximity
zone which determines activation of the
associative relationship.
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To illustrate the interaction between entities influenced by the associative
relationship, scveral examples of attract and repel have been provided. The illustrations
provide a point of reference which indicates the modeling scene prior to a translation and
indicates the anticipated results based on the association and mobility of the entities in the
scene.  Following each of these reference views are the actual results of the translation in
C+Mod. Since this is still view of an interactive and dynamic process, outlined representations
of the object have been provided to indicate their position prior o translation.
Figure 96 illustrates the view of the modeling scene prior to a translation of an entity
(object A) which will be translated within the offset tolerance of another entity (object B). The
anticipated results are indicated by the direction vectors emanating from each of the entities.
Both entities have an association with one another of attract. In addition, object B has a
mobility characteristic set to free.  As the user interactively translates the entity (object A) and
approaches the second cntity, object B will snap, or move in one continuous motion, 1o the
face of the translating entity (figure 97). As object A continues (o translate. object B will
remain attached. To free the association between the two entitics, a quick and continuous

movement of the original entity will release the attraction.

Obiject B: free mobjk ObjectB is snappeg

Figure 96: The anticipated transiation and Figure 97: The resulting interaction between
vesultant interaction involving an entity an entity with free mobility and an attract
with free mobility and an attract assoc. association.
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With the mobility of the second object set to fixed, the anticipated results indicate a
different reaction. Figure 98 illustrates the view of the modeling scene prior to a translation of
an entity (object A) which will be translated within the offset tolerance of another entity (object
B). The anticipated results are indicated by the direction vectors emanating from each of the
entities. Both entities have an association with one another of attract. As the user interactively
translates the entity (object A) and approaches the second entity, object A will snap, or move in
one continuous motion, to the face of the fixed entity, object B (figure 99). Object A now can
only translate along the face of the fixed entity and cannot extend beyond the bounds of this
constraint. As with the previous example, to free the association between the two entities, a
quick and continuous movement of the original entity will release the attraction and permit free
movement in three-space without restrictions.

In either case, attract with free mobility, or attract with fixed mobility, the interacting
objects will attempt to attach themselves to one another.  This characteristic is useful when
considering the placement ot solids within a space, such as kitchen cabinetry along a static
wall. The wall can be set to fixed, and the association between it and the cabinets can be set 1o

attract, thus cnsuring that the cabincts arc placed against a wall.

Object B: fixed mobi

is srap
to the fag@g of object B
as ct A translates.
ject B is unchanged. -7

Figure 98: The anticipated transiation and Figure 99: The resulting interaction between
resultant interaction involving an entity an entity with fixed mobility and an attract
with fixed mobility and an attract assoc. association.
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The modeling effects of the repel association follow in similar tashion to that of the
attract association. The difference is in the reaction of the entities. Entities with an repel
association will attempt to reject the attachment or encroachment upon the space surrounding
the entity. They will behave as magnets with similar charges attempting to repel one another.
An illustration of the repel association with both free and fixed mobility is presented to
illustrate the visualization of the effects on the modeling process.

Figure 100 illustrates the view of the modeling scene prior to a translation of an
entity (object A) which will be translated within the offset tolerance of another entity (object
B). The anticipated results are indicated by the direction vectors emanating from each of the
entities. Both entities have an association with one another of repel. Object B has a mobility
characteristic set to free.  As the user interactively translates the entity (object A) and
approaches the second entity, object B will reject the advance of object A by moving out of its
path of travel (figure 101). As object A continues to translate, within the tolerance zone of
object B, object B will continuously move away from object A. This association will continue
as long as object A encroaches upon this tolerance zone. A movement of object A in a

direction away from object B does not effect object B.

Object B: free mobji Object B is repeILed /

Resuitant.

-7 -7

Figure 100: The anticipated translation Figure 101: The resulting interaction
and resultant interaction involving an entity between an entity with free mobility and a
with free mobility and a repel association. repel association.
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With the mobility of the second object set to tixed, the anticipated results indicate an
opposite reaction. Figure 102 illustrates the view ol the modeling scene prior 10 a translation
of an entity (object A) which will be translated within the offset wlerance of another cntity
{(object B). The anticipated results are indicated by the direction vectors emanating from cach
of the entities. Both entities have an associaiion with onc another of repel.  As the user
interactively translates the entity (object A) and approaches the second entity, object A will be
rejected. or repelled away from object B (figure 103).  As object A continues 10 translate,
within the tolerance zone of object B, object B will continuously reject object A and force it
back from its tolerance zone. This association will continue as long as object A encroaches
upon this tolerance zone.

The use of the association relationship provides a method of realistically modeling
the behavior of interacting entitics.  When used in combination with the other constraint
characieristics and relationships, the modeling environment becomes responsive to the physical
and relational qaality of solid and space entitics. In an interactive modeling environment, this
translates to a dynamic and realistic modeling of simulated real world entitics which will

behave in accordance with anticipated and results.

Object B: fixed mopi

bultant. /
- N

Figure 102: The anticipated translation Figure 103: The resulting interaction
and resultant interaction involving an entity between an entity with fixed mobility and a
with fixed mobility and a repel association. repel association.

-7
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3.4.1.3 Identification Attribute
The identification atiribute atlows the unique identification of a sct of constraints which
have been established for a given entity.  This allows the system 1o distinguish between
differing types of entitics when establishing associations, and provides a means of identifying
a set of constraints during the /O operations. Note that the type definition attribute is required

when storing and retrieving constraint information.

3.4.1.3.1 Type Definition

Ie Type Definition is a unique identifiable descriptive at'ribute associated 1o the set of

= constraints representing an entity. The specitication of a type definition 10 a specific
set of constraints provides the capability to store and retricve the entire sct ol constraints with a
single identifving macro. By allowing the sct of constraints 10 be identified a8 a single type
detinition, the set of constraints can be created and stored once, and then retrieved and
assigned (o cntitics with a single reference indicating that type.  This ability to assign a
complete setof constraints with a single reference allows quick and ctlicient usc of the design
knowledge about entity types without specific knowledge about all the pariicular atiributes
required to represent that type. A type definition is required when storing a sct of constraints
into memory.  Upon sclecting the type definition icon. the system will prompt the user for a
name of the entity (figure 104), The default name is the current panie assigned 10 the system

specifications.

i TYPE BEFINITION S
?

] —_—

Enter the upique identifying

name for the entity.
@ ! >
TYPE:|System

Figure 104: 'The type definition dialog box.
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3.4.2 S.ore Type and Retrieve Type

C+*Mod provides the user 1o store and retrieve specitic sets of design knowledge as an
entire type. This allows the specification of an entire class ol objects to be stored for use later
without respecification. C*Mod distinguishes this file structure independently form the project
files specified in section 3.1.1 and 3.2.2. Figure 105 illustratcs the constiaint type definition
icon uscd 10 represent this information. The standard file dialogs presenied in the following
section will only access these types of files it they are present. To facilitate this specific form
of file processing, C*Mod provides two specific I/O operations under the constraint sub-menu.,
Store Type and Retrieve Type. The (ollowing section will claborate on the use of cach of

these operations.

definition

Figure 105: The type definition file.

3.4.2.1 Store Type

Store Type allows the storage of the complete set of constraint specifications based on
the entity type definition to "permanent” memory. thus retaining the design specifications for
use at a later point in time. Upon sclection of the Store  Type sub-mode, and subscquent
click en the graphic window, the system will display a standard file dialog box which will
prompt the user lor a type definition in the event one has not been provided. and will write the
type definition to a file in "permanent” memory. In the event that a type definition previously
exists, the user will be prompted to change or aceept the name of the definition for storage.

Figure 106 illustrates the standard file dialog for saving constraint files.
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3.4.2.2 Retrieve Type

Retrieve type allows the retrieval of a complete set of constraiui specifications based on
the type definition which have been stored in "permancnt” memory. Upon sclection of the
Retrieve Type sub-mode, and subsequent click on the graphic window, the system will
display a standard filc dialog box which will prompt the user for the identification of the type
detinition which is to be retrieved, and will attempt 10 access that set of constraint
specifications. In the event that the constraints have been stored with the store type operation
listed abovc, the system will then proceed to read the file into the system specifications for use
by the system. Figure 107 illustrates the standard file dialog box tor file retrieval. Any new
entities created under this set of system specifications will contain and exhibit the constraints of

the retrieved type.

(S Ta i)
CetAnit file H =2 Tobin > Tobin
! |
l '
Save fonstraint As:
{59“9"‘ ‘I Cancel 3
Figure 106: Store file dialog box. Figure 107: Retrieve file dialog box.

3.4.3 Query

As an alternative 1o viewing the individual constraints upon a sclected entity, C*Mod
provides the user with the ability to query the systems to display the complete set of design
knowledge pertaining to a specific entity. or o the system specifications. By selecting the
Query option under the constraints sub-menu, the user can retrieve the entire set of constraints

which have been specified for the entity or for the system. Subsequent clicking, or sclection of




67
the entity will display the query dialog box illustrating all of the constraints set for that
particular object (figure 108). In the event that the constraints for the system are desired, any
selection on the graphic window which is not an object will display the same dialog box for the
system specifications. This method allows the immediate and ctficient visualization of the

entire set of constraints from a single command.

The following constreints have been set:

Constrant Besed
Sokd

Entity Name: System ARCH 844

Entity Type: Solid Entity

Mobility: Free c o W

Dimensional: min max inc active replicate
width: 24.0 96.0 3.0 Yes No
‘ength: 24.0 96.0 3.0 Yes No
height: 24.0 96.0 3.0 Yes No

Spatial: min mox active orthe
volume: 0.0 0.0 No No
area: 0.0 0.0 No No

Rotationael: mox min inc active
HWrot: 0.0 00 0.0 No
yrot: 0.0 0.0 00 No
2rot: 0.0 00 0.0 No

Prosimity: width length height active

Sofid : t26 120 g Yes

Figure 108: The query dialog box.




CHAPTER 1V

INTERNAL WORKINGS AND ALGORITHMS

The introduction of design knowledge to the interactive solid modeling process requires
that the modeler provide an efficient and economic method of determining and evaluating the
criteria, or constraints. This is a result of the large number of calculations in a three-
dimensional environment. Each additional cntity, as well as cach additional constraint, or
representation of design knowledge, turther compounds the interactive modeling process.
This chapter discusses the internal composition of the constraint-based solid modeler, C*Mod.
and presents the main data structures used 1o represent solid objects and design knowledge.
Additional discussion will focus on the algorithmic outline of cach of the main procedures used

to provide the association and interaction between solids and constraints.

4.1 Discussion of the Internal Composition

To achieve the goals and objectives stated in chapter 1. the main capabilities of the
constraint-based solid modeler must allow, and provide for, the interactive use of design
knowledge to constrain the generation and editing functions of a modeler. To accomplish this
interaction, the constraint-based solid modcler must represent two types of data, object and
constraint. The object data structure represents the entity itself, and is the primary data
structure for the solid modeler. Section 4.1.1 discusses the object data structure in detail, and
illustrates the internal representation within the modeler. The second primary data structure for
the constraint-based solid modeler is the constraint data structurc. This data structure

represenis the design knowledge about the entity specified in the object data structure. Section
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4.1.2 discusses the constraint data structure in detail, and illustrates the internal representation

with the modeler.

4.1.1 Object Data Structure

The entity in the constraint-based solid modeler is represented internally in an object
data structure.  This internal representation models the solid object by utilizing a boundary
representation. A boundary representation contains descriptive data at six topological levels,
object, volume, face, curve, segment, and points. Each topological level is internally
represented as a separate array with references between the different levels.  Figure 109
illustrates a hicarchical diagram indicating the topological levels from the most general to the

most specific.

L]
QBVECT VOLUME FACE CURVE SEGMENT POQINTS

Figure 109: Topological levels of an object.

Boundary representations follow a hicarchical description indicated by the topological
levels of the object. An object is defined *v the composition of a volume, and contains
attribute information such as color, and constraints. A volume is defined as a collection of
faces which represent each face, or face, of an entity. Volumes contain a list of all of the taces
which represent the surface of the object. To represent cach surface, faces, provide a means
of storing a collection of curves, each representing a continuous cdge found along the planar
surface. Thus, a face with an opening is represented by two curves, onc for the outer edge, or

boundary, of the surface, and one for the outer edge, or boundary, of the opening. These
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curves are a collection of continuous segments which define the boundary of the curve.
Curves contain a list of all of the segments which construct the curve, along with the number
of points contained within cach curve. Segments connect points, and allow for the tracing of
cach edge along the curve. At the lowest topological level, points represent the actual
Cartesian coordinate values which define the object. By constructing the solid object in this
manner, the points which define the entire object are stored only once, regardiess of the
number of times it is used by adjacent taces. Figure 110 illustrates the internal object data
structure. In addition, a complete description of each component is presented 10 fully illustraie

the composition of the object.

OBJECT DATA STRUCTURE :
oB)
0 5 O 3
A see figure 111.
VOLM g
ivolm faceindx .next frojnobj
|

N N

-]

FACE $
iface .curvindx .next .f
o0 O O
CURY §

0 O O
s =

XYZ
ixyz .marker X RS 2 yolm
—>0) [ ] [Cone] [Cose] [Pode]

volm

Figure 110: Diagram of the object data structure.




71
Obj, which is at the highest opological level imernally, represent the object as a
collection of all other topological levels, and include five elements, type, volmindx, color,

next, and entindx. The following describes each of these clements:

- type: adescription of the type of object generation (extrusion, convergence).

- volmindx: an index to the first volume of the object.

- color: a color descriptor which indicates the color of the object.

- mext: an index to the next object in the object array structure.

- entindx:  an index which is the link between the object data structure and the

constraini data structure, and allows the entity to possess design knowledge.

Volm is the next topological level and represent the collection of volume entities which
are formed to compose the object.  Typically, a collection ol volumes create an object.
However, for this modeler, an object and volume are similar in nature. A volume structure is
composed of three elements, fromobj, faceindx, and next. The following describes each of

these clements:

- fromobj: an index 10 the face array, and indicates the first face among the list of
faces which make up the object.

- fromobj: an index which serves as a reference 1o the object which the volume
belongs. This is the link between objects and volumes.

- next: an index o the next volume in the volume array structure.

Face is an array which indicates eack face of a volume and is made up of a collection
of curves comprising each face of an entity. The face array is composed of three clements,

fromvolm, curvindx, and next. The following describes cach of these clements:

- fromvolm: an index 10 the volume which is the owner of this faces.
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- curvindx: an index to the curve array indicating the list ot curves which make up
cach face.

- mext: an index to the next face in the face array structure.

Curv is an array which contains a list of all ¢ irves tor each face of the object. Curves
include the outer curve of a solid entity as well as any interior curve representing opening
within the face of the entity. The curve structure contains four clements, fromface. segindx,

totpoints, and next. The following describes cach of these clements:

- fromface: an index to the face which owns the curve, indicating which face this
curve belongs to.

- segindx: an index to the first segement of the curve, indicating the beginning of the
curve at the segment levei.

- totpoints: indicates the total number of points or scgments which make up the
curve, this acts as a loop counter when tracing the curve,

- next: an index to the next curve in the curve array structure which belongs to this

particular face.

Seg is an array which contains a two-way linked list of all scgments which make up
the each curve in the face. Segments are a connection between two points in the data structure
arc linked to the previous and next segments of the curve. The segment structure contains four

clements. fromeurv, xyzindx, prev, and next. The following describes cach of these clements:

- fromcurv: an index 1o the curve which owns this scgment, indicating which curve

this segment belongs to.

- xyzindx: an index to the points (xyz) array, indicating the beginning point of the

segment.
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- prev: an index to the seg array, indicating the previous segement in the list of
segments which compose the curve.

- next: an index to the seg array, indicating the next segment in the list of segments

which compose the curve.

XYZ is an array which contains the lowest topological level of information required 0
represent the solid object, and stores the coordinate values of the points in three-space. The
xyz structure contains five elements, fromvolm, marker, x, y, and z. The following describes

cach of these clements:

- fromvolm: an index to the volm array, indicating the volume which owns this set
of points.

- marker: a open clement which serves as a flag tor various operations within the
modecler.

- x: a double value indicating the Cartesian coordinate value of the point in the x
direction.

- y: a double value indicating the Cartesian coordinate value of the point in the y
direction.

- z: a double value indicating the Cartesian coordinate value of the point in the z

direction.

4.1.2 Constraint Data Structure

Design knowledge is represented internally by the constraint data structuic.  The
constraint data structure is composed of two information levels, and five constraint tables. The
two information levels are comprised of the entity level which stores specific design

knowledge input by the user, and the characteristic and relationship level, which is determined

by the system. The importance of these elements lies in the access to the design data which is




74
stored in the constraint tables. Design data, when interpreted interactively through the user. is

stored in one of five tables, data, association, containment, bounding box, proximity box, and

bounding sphere. Figure 111 illustrates the constraint data structure and its information tlow.

CONSTRAINT DATA STRUCTURE FOR AN ENTITY:
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Figure 111: Diagram of the constraint data structure.
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Entity, which is at the highest level internally, is an array of the critical

information required by the constraint modeler, and is indexed into through the object's

entindx ficld. The entity field is composed of cighteen clements: fromobj, name, type,

mobility, width, length, height, area, volume, xrot, yrot, zrot, proximity. assoc, contain,

bound_b, prox_b, and bound_s. The following is a discussion of each of these clements:

[l

fromobj: an index to the object data structure, indicating the object which owns
this particular sct of constraints or design data.

name: The name represents a specific identity lor a collection of design data or
constraints, and is used to store and retrieve the data as that collection.

type: indicates the entity's spatial representation cither as a solid or as a spatial. A 0
(zero) indicates a space, and a value of 1 (one) indicates a solid object.

mobility: a specific value indicating the entitics ability to react to the interaction
between other entitics. A (0 (zero) value indicates fixed mobility, and a | (one) value
indicates free mobility.

width: an index to the data table, indicating the width attributes required for the
cntity.  The values represented in the data table refer to the minimum width,
maximum width, increment, active/inactive flag, and the replication ftlag.
respectively. Negaltive values indicate that attribute is not applicable.

length: an index to the data table, indicating the length attributes required for the
entity.  The values represented in the data table refer 10 the minimum length,
maximum length, increment, active/inactive {lag, and the replication  tlag,
respectively. Negative values indicate that attribute is not applicable.

height: an index to the data table, indicating the height attributes required for the
entity.  The values represented in the data table refer to the minimum height,

maximum hcight, increment, active/inactive flag, and the replication  flag,
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respectively.  Negative values indicate that attribute is not applicable.  Negative
values indicate that attribute is not applicable.

- area: an index to the data table, indicating the area attributes required for the entity.
The values represented in the data table refer to the minimum area , maximum area, a
null value, active/inactive flag, and the continuity tlag, respectively. Negative values
indicate that attribute is not applicable.

- volume: an index to the data table, indicating the volume attributes required for the
entity. The values represented in the data table refer to the minimum volume,
maximum volume, a null value, active/inactive flag, and the continuity flag,
respectively.

- xrot: an index 10 the data table, indicating the xrot attributes required for the entity.
The values represented in the data table refer 1o the minimum rotation angie,
maximum rotation angle, an incremental angle, an active/inactive {lag, and a null
value, respectively.

- yrot: anindex to the data table, indicating the yrot attributes required for the entity.
The values represented in the data table refer to the minimum rotation angle,
maximum rotation angle, an incremental angle, an active/inactive flag, and a null
value, respectively.

- zrot: an index to the data table, indicating the zrot attributes required for the entity.
The values represented in the data table refer to the minimum rotation angle,
maximum rotation angle, an incremental angle, an active/inactive flag, and a null
value, respectively.

- proximity: anindex (o the data table, indicating the specific proximity information
for this constraint type.

- assoc:  anindex 10 the association table, indicating the entity's association (o other

specified cntities.
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- contain: an index to the containment table, indicating the cntity's containment
relationship with other entities.
- bound_b: an index to the bounding box table, indicating the top and bottom face of
the entity's bounding box.
- prox_b: anindex o the proximity box table, indicating the top and bottom face of
the entity's proximity box.
- bound_s: an index to the bounding sphere table, indicating the entity's bounding

sphere.

Data_Table, is an array structure which contains the actual values used to describe the
design data and constraints. The data_table is a dynamic structurc which size varies by the
number of constraints specified as unique constraints by the user.  This use of cntity
specification allows for the storage and retrieval of information pertinent to the constraint-based
modeler. The data_table is composed of five clements, value_a, value_b, value_c. flag_a, and

flag_b. The following is a discussion of cach clement:

- value_a: a float value which represents the minimum values tor a specified ficld.
This element is used for cach of the character elements, as well as for the width
proximity valuc in the relational structure.

- value_b: a float value which represents the maximum values for a specified field.
This clement is used for cach of the character clements, as well as tor the length
proximity valuc in the relational structure.

- value_c: a tloat value which represents the incremental values for a specified field.
This clement is used for cach of the character clements, as well as for the width
proximity value in the relational structure. This ficld is not used for the arca and

volume characteristics.
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- flag_a: an integer value which represents the active/inactive flag used to indicate the
application of this constraint within the modeler.

- flag_b: anintcger value which represents the replication and orthogonal continuity

within a particular constraint. This field is not used for rotational attributes.

Association_Table, is a linked list array structure which contains the associations
established between the entity and the other specified centities within the data structure. This list
serves 10 represent how the clement associates with cach other clement in the currently
described world.  The association_table is composed of three elements, entity, associate, and

next. The tollowing is a discussion of each element:

- entity: an index to the entity array structure, indicating the entity which the current
entity is associated.

- associate: an integer value indicating the association with the entity specified in the
entity tield. A -1 (neg onc) value represents an adverse or repel association, a 0
(zero) value represents no association and serves as the default value, and a 1 (one)
value represents attraction association.

- next: an index to the next entity in the association table, which an association has

been established.

Containment_Table, is a linked list array structure which contains the containment
restrictions upon the entity.  This list serves as the hicarchical tree structure governing the
activity of the entity.  The containment_table is composed of four clements, cntity, type,

cont_by, and next. The tollowing is a discussion of cach clement:

- entity: an index to the entity array structure, indicating the entity.

- type: indicatcs the cntity's spatial represcntation cither as a solid or as a spatial.
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- cont_by: an index to the cntity array structure which indicates the cntity which
contains this catity.

- next: anindex to the next entity in the Containment_table list.

Bounding Box Table, an array structure which contains the bounding box of the
entity. This is important distinguishing characteristic of the solid cntity as it establishes the link
between the entity and the constraints. The bounding box is represented by the four points
which definc the base, and the four points which define the top.  The representations,

box_base and box_top, provide a static array for this information.

- box_base: an array of four clements, which represent three-dimensional Cartesian
coordinate values of the four points of the basc. A double value is stored for cach
value X, y, and z.

- box_top: an array of four elements, which represent three-dimensional Cartesian
coordinate values of the four points of the top. A double value is stored for cach
value X. y, and 2.

- visible: an integer value vsed 1o determine whether or not to display the bounding

box representation.

Proximity Box Table, an array structurc which contains the proximity box of the
centity. This is important characteristic of an cntity and is determined by the specification of a
proximity distance which is stored in the data table. The pre-calculation of this offset provides
an efficient method of maintaining the data during three-dimensional manipulation, and
therefore limits the recalculation which would be required for every movement of the object.
The proximity box is represented by the four points which define the base, and the four points
which define the top. The representations, prox_base and prox_top, provide a static array for

this information.
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- prox_base: an array of four clements, which represent three-dimensional Cartesian

coordinate values of the four points of the basc. A double valuc is stored for each
value x, y, and z.

- prox_top: an array of four elements, which represent three-dimensional Cariesian

coordinate values of the four points of the top. A double valuc is stored for cach
valuc X. y, and z.

- visible: is not used.

Bounding Sphere Table, an array structure which contains the bounding sphere of
the entity, is also provided. The bounding sphere is utilized to determine candidate entities for
further intersection calculation.  This method of proximity checking allows for the rapid

climination or determination of possible intersecting object.

cent_x: a valuc indicating the x value of the centroid of the entity.

- cent_y: avaluc indicating the y value of the centroid of the entity.

cent_z: a valuc indicating the z value of the centroid of the entity.

radius: a valuc indicating the radius of the sphere.

The establishment of the tables, allows the algorithms to exccute in a more ctiicient
manner. Pre-calculation of data which is continuously utilized provides an ctiective solution to
the exponential loss in performance due to the number of three-dimensional calculations
required. In order to aid the programmer in visualizing and recording this information, the
intzrnal constraint data basc can be written to an cxternal file. This file provides the
programmer with all of the user specified constraints pertinent to a specitic entity, but also
indicates the internally determined information as well. As a point of illustration. figure 112
provides a complete example of the constraint data structure for a cubic entity created in the

fourth quadrant of the x-y plane.
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Constraint Set for entity 1:
Entity: 1
fromobj 0
name Obj1
type 1 Data Table:
mobility 1 idata value_a value_b value_c flag_a flag_b
width 9 9) 24.00 72.00 6.00 1 0
tength 10 10) 48.00 96.00 6.00 1 o
height 11 11) 72.00 96.00 6.00 1 0
area 12 12) 125.00 250.00 0.00 1 1
volume 13 13) 0.00 0.00 0.00 0 0
xrot 14 14) 45.00 90.00 5.00 1 0
yrot 15 15) 45.00 90.00 5.00 1 0
zrot 16 16) 45.00 90.00 5.00 1 0
prox 17 17) 12.00 12.00 12.00 1 0
Association Table:
iassoc entity associate next
assoc 1 1) 1 0 3
3) 2 1 6
6) 3 -1 -1
Containment Table:
icont entity type contby next
contain 1 1) -1 1 -1 -1
Bounding Box Table:
ibbox box_base box_top
bound_b 1 1) ibase X y z itop X y z
0) -168.00 -144.00 0.00 0) -168.00 -144.00 96.00
1) -168.00 -90.00 0.00 1) -168.00 -90.00 96.00
2) -102.00 -90.00 0.00 2) -102.00 -90.00 96.00
3) -102.00 -144.00 0.00 3) -102.00 -144.00 96.00
visible 1
Proximity Box Table:
ipbox prox_base prox_top
prox_b 1 1) ibase X y z itop X y z
0) -180.00 -156.00 -12.00 0)-180.00 -156.00 108.00
1) -180.00 -78.00 -12.00 1)-180.00 -78.00 108.00
2) -90.00 -78.00 -12.00 2) -90.00 -78.00 108.00
3) -90.00 -156.00 -12.00 3) -90.00 -156.00 108.0C
Bounding Sphere Table:
ibsphere cent_x cent_y cent_z radius
bound_s 1 1) -135.00 -117.00 48.00 180.53

Figure 112: An example of the internal constraint database for an entity.
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4.2 Algorithmic Outline of Required Procedures

The implementation of the constraint-based solid modcler tollows the form of the
functional characteristics as described in Chapter Il To implement the internal workings and
capabilitics of the modeler, several additions and modification o the cxisting educational
modeler, MacMod844, were performed.  To illustrate the implementation of the constraint
operations 1o the program, three main areas, knowledge specification, entity generation, and
constraint modeling, are presented in order to clarify new procedures and modifications 10
existing procedures which were required. The following scctions claborate on the gencral
requirements for implementation, where and how the requirements are composed within the
existing program, and a gencral algorithmic outline of the process of constraint-based modeling

with the procedures completed.
4.2.1 Knowledge Specification

As stated in Chapter HI, section 3.4, the first of four main capabilitics of the constraint-
based solid modeler is to provide the ability to specify the design knowledge applicable o user
definable three-dimensional entities.  What this crtails is the ability to input the knowledge
specifications. This section deals with the user interface and the dialog handler required to
input the design knowledge into the system specifications which are required for the generation
of three-dimensional entitics with constraints and includes the algorithmic outline for

implementing these features.
4.2.1.1 User Interface

To facilitate the interaction between the user and the constraint modeler, scveral
modification to the existing MacMod844, program were be made including additions to the

menu selection routines, and the iconic interface. The changes to display the menu items and
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icons were relatively minor and are not presented formally here. However, the interface
between the dialog handler and the uscr is critical 1o the operation of the program and is
presented. This interface is provided in the x_command function of MacMod844. To
facilitate the proper acuivation and interface between the uscr and the dialog handler, the icon
selection must be added accordingly. The outline below and the diagram (figure 113) indicatc

the process which was accommodated.

do_handie_chalog do_handie_dialog
[ (& [#] S— —
% %
. - ph SWITCH SWITCH
T @z 213 214 ON error - SysBeep @_ oN do_handie_dialog
r [ || svemooe [Soresretreve) SUBMODE [Sre/reneve)
) | 219
215 216 217 | 218 do_handie_diaiog 00_handie_dialog
(query) tquery)

Figure 113: Illustration of the interface calls to properly invoke the dialog handler.

The following outline describes the additions o x_command which were made in order
1o facilitate the user interface tor the knowledge specification/knowledge manipulation fcatures

of the constraint-based solid modeler:

1) Determine the selected command by performing a switch on the activicon.  This
will determine the case of the selected mode the user desires to perform.

2) The active icon and the submode determines the parameters which will be passed to
the constraint dialog handler.

3) Determine the submode selected (this is from the mode menu - constraints, and
includes the options set, view/modify, store, retricve, and query) and adjust

parameters accordingly:

set - activates the modal dialog between the user and the system for the system

specifications only.
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view/retrieve - activates the modal dialog between the uscer and the system for all
current specifications, entity and system.
store type - activates the modal dialog between user and system to store into
memory the set of specifications selected.  This is only allowed for the type
definition icon.
retrieve type - activales the modal dialog between user and system to retrieve
from memory the sct of specifications sclected. This is only allowed for the type
definition icon.
query - activates the information (static) dialog indicating the particular
information about the entity or system specifications. Note when sclected via the

type definition icon, a complete list of all parameters will be presented.

4) Make the call to the do_dialog_handler with the proper scttings.

4.2.1.2 Dialog Handler

To provide the proper dialog routine calls, a dialog handler is included 10 aid the user.
The dialog handler facilitates the link between the menu and icon scelection routines and the
dialog management routines. This relatively small function simply determines which dialog
box the user requires, and whether or not the constraints apply to the system specifications or

the entity specifications. The following is an outline of the procedure.

1) Determine the specification which is desired. This is performed by determining
whether or not an cntity has been sclected. It an entity was selected, the
specifications for that particular entity will be called upon, othcrwise, the system

specifications will be used.
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2) Process the selection by determining which case is appropriate for this call.  This is
determined by the mode the user has selected, set, view/modify, store, retrieve, or

query. Depending upon the case, one of the following options will be performed.

a. Sct the system specifications accordingly. This is accomplished by invoking a
modal dialog tor the active icon and indicating that the systems constraints are
1o be used.

b. Set the entity specifications accordingly. This is accomplished by invoking a
modal dialog for the active icon and indicating the specitic entity’s constraints
are to be used.

¢. Store the constraint specifications by invoking the storage function and
providing the constraint name which is to be stored.

d. Retrieve the constraint specifications by invoking the retrieval function and
providing the constraint name which is 10 be retrieved.

¢. Perform a query on the selection by invoking a do_query function.

3) Rcturn to the calling function.

(set, view/modity)
‘/——' \
determine Return to
ety of System caiing function

set system set entity store retneve
Lot ] |y | |

do_modal_caiog | { do_modal_daiog do_storage do_retneval do_query

Figure 114: [llustration of the dialog handler.
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4.2.2 Entity Generation

The sccond of the three main areas of the constraint-based solid modeler is 1o provide
the ability to generate, view, modify, store, and retricve the entity along with its constraints.
This scction outlines the algorithm required to create the three dimensional representation
utilizing the solid data structure presented in section 4.1.1 as well as the constraint data
structure presented in section 4.1.2.  The following algorithm is based on the current

operations of MacMod844.
4.2.2.1 Generation within Dimensional Constraints

The following algorithm was incorporated as part of the MacModcler routines, and is

invoked when the constraint mode of operation is active while in the extrusion mode.

1) Calculate the three-dimensional coordinate value of the point selected.

2) Determine il first point selected lics within any existing solid entitics.
(Point_inside_solid) If so, reject attempt to create a solid enlity.

3) Set adjustment factor to full value (1.0) for rectilinear entitics, and half value (0.5)
for all other primitive entitics. (This allows for the difference in creation
techniques of primitives.)

4)  Check the set height value for compliance with the allowable range of values:

a. It height set is greater than the allowable maximum, set height to maximum
value.
b. If height set is less than the allowable minimum, sct height 10 minimum value.

5) Setthe genceration threshold values for length and width:

a. Set the allowable minimum length to the adjusted Length Minimum.
b. Set the allowable maximum length to the adjusted Length Maximum.

¢. Set the allowable minimum width to the adjusted Width Minimum.
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d. Sect the allowable maximum length to the adjusted Width Maximum.
Calculate the screen point of the three-dimensional coordinate value and set and
mark the results as the {irst point of the base.
Initialize the horizontal and vertical indexes 10 zero.  Initialize the héginning point
array, the ending point array, the polygon point list, and the created array,
allocating sufficicnt memory space.
Assign the beginning point of the initial object the value of the first point. The
beginning point array carries the first point for cach object based upon the
horizontal and vertical indexes.
Set the old point equal to the first point; this sets the last mouse position.
Sct the penmode to Xor in preparation tor rubberbanding the primitive.,
Initialize the created array indicating no objects have been drawn.
While the mouse button is depressed, perform the following steps to rubberband
the primitive object interactively including replication if required:
a. Read the new mouse location and determine it its position has changed.
b. 1fthis is a new location, perform the following:

1. If the replication attribute of the dimensional constraint has been set, adjust

the horizontal and vertical indexes according to the following:

(a) Calculate the three-dimensional coordinate value ol the beginning
point and the new point adjusting for the reference planc.

(by It the horizontal distance between the new location and the current
beginning point is equal to the maximum allowable length, determine
if the horizontal movement is away irom the beginning point.

(¢) If the horizondal movement is away from the previous point, that is the
direction of movement is moving away {rom the beginning point,

perform the following:
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(1) increment the horizontal index

(2) set the beginning point for cach replicated object (each new
instance created by incrementing the horizontal index) offsetting
the horizontal valuc by the length proximity value and if' non-
rectilinear primitive. adding the allowable length.

If the horizontal movement is toward the previous point, that is the

direction of movement is moving to the beginning point, perform the

following:

(1) for cach replicated object (cach instance of the current horizontal
index) crase the mark designating the beginning point, crasc the
polygon, and sct the created index to falsce.

(2) decrement the horizontal index.

It the vertical distance between the new location and the current

beginning point is equal to the maximum allowable width, determine

it the vertical movement is away from the beginning point.

It the vertical movement is away {from the previous point, that is the

dircction of mevement is moving away from the beginning point,

perform the following:

(1) increment the vertical index

(2) set the beginning point for cach replicated object (cach new
instance created by incrementing the vertical index)offsetting the
vertical value by the width proximity value and it non-rectilinear
primitive, adding the allowable width.

If the vertical movement is toward the previous point, that is the

direction of movement is moving to the beginning point, perform the

following:
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(1) for each replicated object (cach instance of the current vertical

index) erase the mark designating the beginning point, crase the

polygon, and set the created index to falsce.

(2) decrement the vertical index.

For cach horizontal objcct (€ to horizontal index) and for cach vertical

object ( 0 to vertical index) perform the [ollowing:

(a) Calculate the three-dimensional coordinate value .. the  beginning

(b)

(€)

(d)

point and the new point adjusting for the reference planc.

Determine whether the new width is less than the minimum allowable

width, within the minimum and maximum allowablc width. or greater

than the maximum allowable width.

Dctermine whether the new length is less than the minimal allowable

length, within the minimum and maximum allowable length, or

greater than the maximum aliowable length.

Set the working zone according to the following:

zone i:

zone 2:

zone 3:

zone 4:

Width is less than the minimum allowable width AND
Length is less than the minimum allowable length.

Length is within the allowable tlerances tor length AND
(Width is less than the minimum allowable width OR greater
than the maximum allowable width.)

Width is within the allowable tolerances lor  width
AND(Lcngth is less than the minimum allowable lengith OR
greater than the maximum allowabie length.)

Length is within the allowable tolerances tor length AND

Width is within the allowablc tolerances for width.
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zonc 5: (Length is greater than the maximum allowable length AND
Width is greater than the maximum allowabic width) OR
{Length is greater than the maximum allowable length AND
Width is less than the minimum allowable width) OR
(Length is less than the minimum allowable length AND
Width is greater than the maximum allowable width.)

If the object has been created (created index is truc) then rubberband the

object according to the following zonc restrictions:

(a) If the location zone is 1 or S, No rubberbanding is allowed.

(by If the location zone is 2, Draw the old polygon, adjust the vertical
value of the objects endpoint accordingly, and draw the niew polvgon.

(¢) If the location zone is 3, Draw the old polygon, adjust the horizontal
value of the objects endpoint accordingly, and draw the new polygon.

(dy If the location zone is 4, Draw the old polygon. adjust both the
horizomal value and the vertical value of the objects endpoint
accordingly, and draw the new polygon.

If the object has not been created (created index s false) then rubberband

the object according to the following zone restrictions:

(a) If the location zone is 1, 2, 3, or 5. No rubberbanding ot object is
allowed.

(b) If the location zonc is 4, sct the creation index to true, set the endpoint
of the entity equal to the new point, draw a mark for the beginning
point, and draw the new polygon.

Set the old point cqual to the new point thus preserving the current jocation

as the previous location.
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13) Upon the release of the mouse button for cach horizontal object (0 to horizontal
index) and for cach vertical object ( 0 to vertical index) perform the following:

a. determine if the polygon primitive has been created. It created index is false
then no entity will be generated,

b. [If the horizontal index, the vertical index, and the created index are all set 10
zero, return to the event manager, no object is created.

¢. If created is true then draw the new polygon and delete mark tor first point.
This prepares the graphics screen for the generation of the solid clements.

14) Sct the pen mode 1o copy.
15) For cach horizontal object (0 to horizontal index) and for cach vertical object ( 0 to
vertical index) perform the following:

a. check the arca of the polygon primitive [If the area of the polygon is negative,
reverse the direction of the segments which composce the polygon.

b. create the three dimensional representation of the solid entity by extrusion of
the base polygon primitive stored in the temporary polygon array. Note these
polygon primitives satisly the dimensional constraints sct in the system
specifications.

¢. store the constraint values into the Constraint data structure for the entity by
incrementing the constraints data structure index, assigning the entity index 10
the object, and setting the values for cach of the constraint ficlds to that of the
system constraints. This scis the entitics individual constraints for later usc.

d. store the bounding box data for the cntity in the corresponding Base_Array
indicating the beginning point, the ending point, the height, and the primitive
type.

16) Free the tollowing temporary arrays, beginning point array, cnding point array,

created array, and the polygon points list array.
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17) Plot the three-dimensional view of the solid data structure, thus graphically
indicating the results of the generation.

18) Return to the system manager.
4.2.3 Constraint Modeling

The last of the capabilitics of the constraint-based solid modceler presented, is 10 provide
the ability to manipulate the three-dimensional entitics in @ manner which is consistent with the
behavioral characteristics dictated by the entity specifications. This, the largest requirement of
the implementation, requires the adaptation of cxisting procedure to provide the required
constraints upon the generation and manipulation of the entitics. This section will handle the
methods of modeling and constraining the modeling process 10 the constraint/attributes of the
entity. Each of the main constraint/attributes is presented and includes the algorithmic outlines

for implementation.
4.2.3.1 Entity Manipulation With Constraints

The following general algorithm illustrates the basic manipulation of an entity within
the constraints set in the modeler. References are made to routines which follow later in this
chapter.  This algorithm handles the basic interaction with the user and will handle the

interaction between primary and secondary entities.

1) Construct the two-dimensional representation of the selected entity adding it to the
rubberbanding list.

2) Begin the rubberbanding sequence by setting the penmode to xor, and reading the
new location of the mouse.

3) While the mouse button is still depressed, perform the following steps:

a. Get the current location of the mouse from the system.
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b. If the current location differs from the previous location, the following is to be
performed:
1. Check constraint satisfaction for the anticipated manipulation. The
algorithm for constraint satisfaction is presented below.
2. If movement is allowed, perform the following steps to represent the image
movement.
(a) Loop through the rubberbanding list and draw all old two-dimensional
representations.
(b) Loop through the rubberbanding list and update the representations.
(c) Loop through the rubberbanding list and draw the new  two-
dimensional representations.
3. Reset the rubberbanding index to the original selected entity.
¢. Set the previous point equal to the current point.
4) Reset the pen mode to patCopy in preparation for redrawing the final three-
dimensional representation.

5) Redraw the three-dimensional representation of the solid clements.

4.2.3.2 Constraint Satisfaction

The following algorithm provides the main interactive constraint satisfaction between
the interaction of entities. This accounts for proximity constraints, associative constraints, and
the manipulation of the cntitics within those constraints. This routine is called when geometric
editing features, such as translation, rotation and scale, arc exccuted by the modeler and is

capable of coordinating the resulting interaction caused by such editing of the primary entity.

1) If the entity is the primary entity (cntity being manipulated) or the entity has a

mobility constraint set to free and the entity is not a space, perform the following,
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otherwise, the manipulation of the entity is not allowed, control is returned to the
calling routine.

a. Check the rubberbanding list to verify the entity is not currently present. If the
entity is not listed, add the cntity to the list and perform the following to
prepare the catity to be rubberbanded:

1. Construct the two-dimensional representation of the centity.

Transtorm the solid representation of the cntity accordingly. including the

bounding box representation.

Check for proximity detection and proximity interference, storing those entities in

the appropriate table, proximity detection table, and/or proximity interference table.

(This algorithm is listed below.)

It the proximity detection set and the proximity interference sct are both empty,

movement is allowed.

Check the proximity detection list to identify those entitics which proximity has

been noted. 1t the entity in the list is not contained in the proximity interference list

perform the {ollowing association adjustments according to the constraints of the
entities.

a. If the entity in the proximity detection sct has no association with the primary
entity, update the two-dimensional representation of the entity and  return
control to the calling routine.

b. If the secondary entity has a mobility characteristic sct to fixed, one of the
following operations must be performed.

1. If the association betwecen the primary and secondary entity is attract, snap
the primary entity to the secondary entity as follows.
(a) While there is no interference detected, incrementally transform the

entity and update the bounding box.
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(b) When interference is detected, restore the primary entity to its
previous position, update the bounding box, and update the two-
dimensional representation of the entity.
It the association between the primary and secondary cntity is repel, the
primary entity is not allowed to excecute the desired transtormation, the
following corrective measures must be performed:
(a) Instruct the calling routine that no movement is allowed.
(b) Restore the position of the entity and the bounding box representation,
to the condition prior to the transformation conducted in step 2.

(¢) Return to the calling routine.

¢. If the secondary entity has a mobility characteristic sct to free, one of the

following operations must be performed:

1.

[0

If the association between the primary and secondary entity is attract, snap

the secondary entity to the primary cntity as follows.

(a) While there is no interference detected, incrementally transtorm, in the
opposite direction , the secondary entity and update the bounding box.

(b) When interference is detected, restore the secondary entity 10 its
previous position, update the bounding box, and update the two-
dimensional representation of the entity.

If the association between the primary and secondary entity is repel, the

sccondary cntity must check for valid transtormation by calling

(recursively) the constraint checking routine and dcetermine constraint

satisfaction for secondary entity movement.

{(a) I, after return from the recursive call, movement is not allowed, the
following corrective measures must be performed on the entity:

(D) Instruct the calling routinc that no movement is allowed.
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(2) Restore the position of the entity and the bounding box
representation, to the condition prior (o the transformation
conducted in step 2.
(3) Return to the calling routinc.
(b) If, after return from the recursive call, movement is allowed, continue
with the procedure.
If the interference set contains entitics which the manipulation of the current entity
effects, loop through each cntity in the set, recursively calling the constraint
satistaction algorithm, and check the constraint satisfaction tor subsequent
secondary manipulation of the entity.
If, after return from the recursive call, movement is not allowed, the following
corrective measures must be performed on the entity:
a. Instruct the calling routine that no movement is allowed.
b. Restore the position of the entity and the bounding box represcntation, to the
condition prior to the transformation conducted in step 2.
¢. Return to the calling routine.
If, after return from the recursive call, movement is allowed, instruct the calling
routine that movement is allowed, update the two-dimensional representation of

the entity,and return control to the calling routine.

4.2.3.3 Detection and Interference Determination

The basic structure of this algorithm follows a hicarchical sequence of determining 1)

proximity detection, the intersection or penetration of one proximity zone and another
proximity zone, and 2) proximity interference, the intersection or penctration of a proximity
zone and an cntity. The distinction between the two becomes important when satisfying the

constraints for proximity, association, and interaction between spatial cntitics (solids and




97

spaces), and is usced to perform the appropriate operations 10 meet the constraints of the

modcler.
?
{ No Proximity Detection Proximity Detection Proximity Detection
! - :
£ ) & E2
Association (E1 and E2) No Proximity Interference No Proximity Interference Proximity interterence
!
| No Assoclation E2 Fixed E1 free to transform E1 free to transform E1o':i‘gei:§|a:’s°:ﬁ°n
t
No Association E2 Free E1 free to transform E1 free to transform E2 .transfor'm s(r epels)
| until detection is clear.
1
Attract with E2 Fixed E1 free to transform E1SnapstoE2 1 3‘?"“’3 "?4
original position
Attract with E2 Free E1 free to transform E2 Snaps to E1 E2 }ransfor;n s('r epels)
until detection is clear.
£1 Retreats to
Repel with E2 Fixed E1 free to transform original posttion N/A
i
i E2 transforms(repels)
|
Repel with E2 Free E1 free to transform until detection is clear. N/A

J Figure 115: Proximity/Association Resultant Matrix.

In order to perform this detection and notification in an ctficicnt manor, this algorithm
cmploys a hicarchical scarch and testing method.  This algorithm utilizes preliminary, and
computationally cfficicnt, methods of determining the entitics which can be trivially rejected
from further consideration.  This allows the more computationally expensive st o be
performed only on the select few entities which have the highest probability of interference
with the operations of another entity. There are three levels of testing which will be performed
successively on cach successful candidates; bounding sphere proximity, point within an entity,
and edge intersection.  The general algorithm is presented below and includes a brief

algorithmic description of each test.
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Given the primary entity, check all remaining secondary entities for intersection

between the bounding spheres. This is accomplished accordingly:

a. Determine the distance between the centroid of the bounding sphere for the
primary e¢nity with that of the secondary entity.

b. Determine the separation distance by subtracting the radius of the each entity,
primary and secondary, from the overall distance determined in 1.a.

1. If the separation distance is negative, add that entity to the candidate list,
and continue.

2. If the separation distance is positive, the two entities 10 not intersect.
discard the sccondary entity from further consideration.

For cach sccondary entity in the candidate list, check for further intersection

between proximity spaces of the primary cntity and the candidate entity by

performing the two intersection tests.

a. First determine whether or not any vertex of the secondary entity's proximity
space is inside the proximity space of the primary entity, or whether or not any
vertex of the primary entity's proximity space is inside the proximity space of
the secondary entity. This is the point in an object test and must be applied to
both cases.

1. For cach vertex of the proximity space of the secondary entity, determine
whether or not the vertex lies on the inside of cach face of the proximity
space of the primary cntity.

(a) If any vertex lies on the inside of all of the faces of the proximity
space of the primary cntity, proximity detection is noted and the
sccondary entity is added to the proximity detection list.  Further

testing of the secondary entity is not required.
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(b) It all vertices of the proximity space for the sccondary entity fail this

test, the second portion of the test must be performed, that is, the two

‘ centitics must be tested again with the roles reversed.

(%)

For cach vertex of the proximity space of the primary cntity, determine
whether or not the vertex lies on the inside of cach face of the proximity
space of the secondary entity.

(a) If any veriex lies on the inside of all of the faces of the proximity
space of the secondary entity, proximity detection is noted and the
secondary entity is added to the proximity detection list.  Further
lesting of the secondary entity is not required.

{b) If all vertices of the proximity space for the primary catity tail this

e . cmm— ppwee e b

test, additional tests must be performed 10 determine other types of
intersection.
b. If the secondary entity fails the initial test, additional testing must be
; performed. The sccondary entity must be tested for edge intersection.  Edge
intersection will determine whether or not the edge of the proximity space for
the secondary entity intersects with the proximity space for the primary entity.
1. For cach edge of the proximity space of the sccondary cntity, determine
whether or not the edge intersects any two faces of the proximity space of
the primary entity.
(a) If the midpoint of the two intersecting points lies on the inside of the
proximity space of the primary cntity, proximity detection is noted and
the secondary entity is added to the proximity detection list. Further

testing of the secondary entity is rot required.




3)

100
(b) Otherwise, the sccondary entity fails this test and additional tests must
be performed to determine the whether or not the last type of
intersection is valid.
The conclusion of step 2 will result in a list of all secondary cntitics in which
proximity detection has been determined.
For cach secondary entity in the proximity detection list, check for intersection
between proximity spaces and the entitics of cach the primary cntity and the
secondary entity by performing the three intersection tests indicated in step 2
again. This secondary testing must test for interference between the entities
themselves and the proximity space limitation of the entity. Each test must be
accomplished twofold, 1) for intersection between the secondary entity's
proximity space and the primary cntity itsclf, and 2) for the primary entity's
proximity space and the sccondary centity itsclf. (Keeping this in mind step two
will not be repeated here.)
The conclusion of step 4 will result in a list of all secondary cntitics in which
proximity interference has been determined.  and concludes the intersecting

constraint algorithm.




CHAPTER V

C-MOD APPLICATIONS

The interactive simulation ot solid and spatial entities, as previously mentioned, is
critical to the success of a constraint-based solid .nodeler. To illustrate the orchestration and
interaction between both spatial and solid entities, several briel examples of the prototypical
application C*Mod are presented. The purpose of this chapter is to provide a demonstration of
the working capabilitics of C*Mod and to demonstrate it's uscfulness as a conceptual design
tool. Three main areas are explored to provide this demonstration, concepiual design of an
architectural clement. conceptual design of building components, and finally, conceptual

design within a design space.
5.1 Conceptual Design of an Architectural Element

Representing solid entitics within a solid modeler provides the basic, and most
tundamental method of visualizing architectural elements.  C*Mod provides a means of
extending this basic capability by allowing design knowledge to control, or constrain, the
generation and manipulation of the clements in a three-dimensional enviornment. To illustrate
the fundamental capabilitics of the constraint-based solid modeler with regards to this
interactive process, the creation of an architectural clement is sequentially presented. The
generation and manipulation of the pedestal demonstrates the interactive nature of modeler, and
illustrates that the system is capable of supporting the lower level decisions of constraint

satisfaction.

101
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Figure 116: Generation of an entity Figure 117: Results illustrating the
within dimensional constraints. generated entity.

The modeling process begins with the specification of the constraints applicable to this
architectural element.  Although not shown, a minimum and maximum height, length and
width have been specitied for the entity.  Figure 116 illustrates the gencration of an entity
within those dimensional constraints. The constructions lines have been provided to illustrate
the dimensional restrictions. The results of this interactive generation process are illustrated in

a wire-frame image in tigure 117.
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igure 118: Topological editing of Figure 119: Geometric editing of the
the entity. inserted segments.

The creation of a cube provides the designer with the basic foundation with which 10

model the desired pedestal.  Utilizing the topological editing operations of the modeler, the
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designer can interactively sculpt the cube into the shape which satisfies a particular requirement
(figure 118). Further geometric editing of the newly constructed faces, allows the pedestal to

take form. Figure 119 illustrates this operations on the entity.

z
Y

d
Figure 120: Subsequent topological Figure 121: Further geometric editiry
and geometric editing to create an of a face of the architectural entity.
architectural ¢.2ment. Note translation of a face limited to

the dimensional constraints.
By successively editing the model in this manncer, the user can quickly create an

architcctural element which is within the desired limitations of the dimensional requirements
without being overly concerned with the data itself (figure 120). With the element created to
mect the basic requirements, further manipulation of the cntity illustrates the advantage of
interactively modeling constraints. Further molding of the pedestal is allowed to be performed
within the dimensional constraints specified (figure 121).  This allows the designer the
flexibility of modeling a new form which satisties the maximum limitations of the dimensional
constraints. The dimensional constraint construction lines were provided to illustrate the
maximum limitation, or bounds, of allowable interactive manipulation. This figure illustrates
that any topological level, in this case a face, can be edited interactively, and such interactive
editing is constrained to the design knowledge which is internally represented.  Subsequent

geometric editing of the capital results in an architectural clement whick satisfies the intent of
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the design. Figure 122 illustrates the completed pedestal.  As described in Chapter |, the

results produced in this manner satisty the design objectives and requirements.

Frd 2|
| % % V
Figure 122: Subsequent geometric Figure 123: Rotation of the element
editing within dimensional constraints. on the x-y plane.

As previously mentioned. the representation of the dimensional data is not restricted 10
the orthogonal plane. Rotation of the pedestal (figure 123) will not disrupt or distort either the
actual dimensional data, or the constraints which are imposed on that dimensional data.  Figure
124 illustrates that subscquent scaling of the entity will still be restricted to the dimensional
limitations.  This figure also provides a visualization ot the bounding box which is used 1o

store the dimensional data, and (o ensure satisfaction with the dimensional constraints.

Current Z Current
Length Data — Height Data

A

Figure 124: ({llustration of the data Figure 125: Illustration of completed
represented after rotation. architectural element modeled in C*Mod.
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The results of the interactive solid modeling process within the limitations of design
knowledge are provided in figures 125 and 126. The designer has created a pedestal which
will perform as a solid entity, and which was created interactively within dimensional
guidelines specified. By providing additional constraints upon the entity, such as mobility and
relationship characteristics, the pedestal will behave in a manner which is consistent with its

definition.

Figure 126: A rendered illustration of an architectural element, which
was created utilizing the constraint operations of C-Mod.

5.2 Conceptual Design of Building Components

The previous section discussed the construction ot an architectural ¢lement within the
guidelines of design knowledge. Taking the process one step further, into interactive modeling
of a conceptual design utilizing building components, the benefit of providing behavioral
characteristics which constrain the interaction between these components can be clearly shown.

This section explores the interaction between entities during the interactive modeling process
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and provides an example of the use of a constraint-based solid modeler during the conceptual
design process. The discussion centers around the development of a conceptual design in
which three rooms are to be modeled as a building mass. Empbhasis is placed on the interaction
and behavior of the conceptual elements during the interactive process.

Three rooms have been modeled utilizing the void modeling operations of C*Mod. These
rooms are modeled as solid entity with no floor or ceiling, and include a window. Figure 127
illustrates a wire-frame representation of these components. The scene can be interactively
manipulated by sclection of an object and translating it in three-space. Since none of the
objects have any relationship or mobility restrictions placed upon them, interaction between
solid entities results in subsequent translation, and therefore, allow solid objects to move other
solid objects. Figure 128 illustrates this cascading, or ripple effect of translating room A along
the x-y reference plane. Since C*Mod interactively models this eftect, the user can visualize
the consequences, or benefits, of editing the scene without being concerned over overlapping

objects, or contlicting entities.

Room Solids

Figure 127: An illustration of three rooms Figure 128: Geometric editing of room A,
created with the void modeling operations. and subsequent translation of B and C.
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Placement of the rooms, can be made quickly and efficiently,without the need for exact
precision. This can be accomplished by determining the desired location of one of the rooms,
and fixing its mobility in three-space. This allows other entities to be placed directly against it
without the entity being displaced. Figure 129 illustrates the results of such interactive
manipulation where room C was placed and fixed in three-space, and the other rooms were

subsequently located.

Figure 129: Final placement of three rooms Figure 130: Generation and placement of a
constrained by the solidity of the entities. horizontal solid entity.

The conceptual design progresses further by generating a roof clement with
dimensional constraints attached (figure 130). Manipulation of the reference plane to place the
roofing element over the rooms will allow eclement 1o be placed in a desirable position.
Considering that room C has a fixed mobility, the roof elcment can be translated along the z
axis 10 align the top of each of the rooms with the bottom of the roof. Since room C restricts

any further movement of the roof, the user does not have 10 be concerned with precision. In
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addition, rooms A and B do not require further alterations since their mobility is free, the
translation of the roof results in the translation of the rooms (figure 131). Once again, the
benefit of modeling solid characteristics are easily visualized.

Creating and duplicating similar entities can be tedious at times. Therefore, C*Mod
provides the user with the ability to replicate entities when the generation process exceeds a
dimensional boundary. An application of the replication operation is the generation of columns
10 support the roofing element. By selecting replication in the length dircction, a series of
columns can be created from a single generation sequence. Figure 132 illustrates the
generation of three columns within dimensional constraints. Note that the construction lines
for the replicated entities are not provided. The results of this multiple generation process are
illustrated in figure 133. It is important to notc that all three columns have identical set of

constraint specifications. Thus not only the objects but the constraints are replicated as well.

A
Columns generated / k

in three-space.
P with replication feature.

Figure 131: Geometric editing of the roof Figure 132: An illustration of element
entity and resulting interaction with the generation within dimensional constraints
rooms. Note room C is fixed and restricts with the replication operations activated.
any further movement of the roof.
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The conceptual design can be further enhanced by the proper placement of the columns

(figure 134), and the modification of the roof. The roof can be manipulated through the use of
the topological and geometrical editing features of the modeler. Additionally, since the roofing
element has a height constraint, vertical translation will be limited to this upper limit (figure
134). This usc of the dimensional constraints illustrates an efficient method of interactively

modeling an entity.
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Figure 133: The results of multiple column Figure 134: Topological and Geometric
generation by replication. editing within dimensional censtraints,

Utilizing the topological and gecometric editing operations of the modeler, a complete
hip roof can be generated to enhance the design (figure 135). Additionally, setting the mobility
of the roof clement (o fixed and establishing an attract association with all objects of the column
type will enable the columns to be snapped to the bottom of the roof. This establishes an
attract association and will keep the columns and the roof together in the event that either are

moved. Figure 136 illustrates the results of this attraction between the roof and the columns.
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Figure 136:

Ly 2w 3
€8 g & T2
o8 m 2= Z a
§¢ m S e £ 8
s 8 . % tE
= em [N o QY
,wm £ £ «
: ~E - < o
0 o O R [

O = = e &

EQ sz o=

g - = ®

0&9 l.m h.w

= =

(4] & on omm

<] €2 s

rt

- »
>, = o

-] a 8

- £<

o -

£ E

£

3 ®

£ 2

o g

2

@

-t

]

-

Figure 138:
design.

dc.
mmm
o
E
£g% . .
.wm..w e -5
dmr - nm
CW‘I ﬂm Mm
B9 =L "
M.w.nnu ¥ -z E
284 = - 0 £ °s -
Q &z ~ > o 2 0%
S= g L8
¥ B -y
- 2 e 2=
- i £ L F]
£ = LEY: Sy
E 35 2
S I 523 2=
= =89 =«
= B
G ] 3¢c= “%Z
=g =My @<c® Szw
> &
X . s ET
um l.mk
82 =4y
<7} B 0




111

To complete the conceptual design, the columns nced to be attracted to a base to

provide additional support. To illustrate that the modeler can perform the same operations,

regardless of the reference plane, or view, figure 137 provides a side clevation in which a base

is being modeled. The interactive nature of the modeler does not preclude the use of any view,
thus, allowing interactive modeling in three-space from any available view.

Providing a means of realistically modeling design knowledge allows the conceptual

design phase to respond to behavioral and physical requircments sct by the user. Results of

the interactive modeling process utilizing the constraints are illustrated in figures 138 and 139.

ﬁ Figure 139: Rendered results of a schematic design solution utilizing C*Mod.




112

5.3 Conceptual Design Utilizing the Design Space

With the understanding of the constraint-based modeling applications at the entity
generation level of conceptual design, and the entity interaction level of conceplual design, the
final discussion of the application of the modeler provides a visualization of the concepts of
interactive modeling withi 1 a realistic design space. This section illustrates the process of
establishing a hypothetical design space in which solid entities representing spatial forms can
be generated and manipulated within the constraints of the design space as well as the
constraints imposed on the entities themselves. The results of this interactive constraint-based

modeling illustrate the use of C*Mod as a conceptual design tool.

Z 4
-X -X
’/
Figure 140: Creation of a design space Figure 141: Modeling the design space
within dimensional constraints. interactively by inserting a segment in

the face of the space.

To begin the process of interactive constraint-based solid modeling, a design space is
created (figure 140). This allows a site to be modeled, with appropriate setbacks. height
restrictions, and shadow/sunlight restrictions.  Figure 141 above illustrates the result of the
generation process, and the beginning of the interactive editing process.  The design space has
been generated with a proximity offsct cstablished in the width direction, and is used to

illustrate a side yard setback within the allowable design space.
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Figure 142: Establishing the shadow/ Figure 143: The generation of a solid
sunlight restriction upon the design space. entity within the design space.

Further geometric editing of the design space allows the entity to be modeled to allow
tor the shadow and sunlight restrictions which may be imposed upon the site.  The results of
this interactive topological and geometrical editing is a solid model representation of the site
constraints, and thus the allowable design space. Figure 142 above, illustrates the completed
allowable design space. To begin the process in conceptual design within the allowable design

space, figure 143 illustrates the introduction of a conceptual solid entity to the modeling

cnvironment.
rd Z
-X A
Figure 144: Translation of the solid entity Figure 145: Interactive modeling of
within the design space, and restricted to the solid entity within and constrained
the constraints of the design space. to the design space.
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The interactive modeling process continues with the geometric editing of the entity

within the allowable design space. Since the design space has a proximity zone established
representing the side yard setback, geometric editing of the solid entity will not penetrate either
this proximity zone or the established limits of the design space. Figure 144 illustrates the
translation of the entity within, and constrained to, the allowable portions of the design space
Figure 145 illustrates the geometric editing of a scgment which is constrained to the

sunlight/shadow restrictions of the design space.

r4
-X
Figure 146: Subsequent geometric editing Figure 147: Creation of a second
of the solid entity constrained to the entity within the design space.
height and shadow setback of the design
space,

Additional geometric editing of the solid entity allows the form to be molded to the
restrictions of the design space (figure 146). Since C*Mod constrains this modeling process
interactively, the user can perform editing functions up to the bounds of any established
constraint. The figures above illustrate this interactive geometric cditing within the design
space, and include the introduction of a second solid ¢ntity to the conceptual design process

(figure 147).
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Figure 148: Vertical translation of the Figure 149: Association attribute of
solid entity constrained to the height attraction established between the two
limitations of the design space. solid entities.

Once the entity has been generated, relationship criteria can be established between the
entities. Figures 148 and 149 above, illustrate the vertical translation of the entity to the height
restriction of the design space, followed by the specification that the entity is to respond in an
altraction association between it and the first entity created. By setting mobility of the first
figure to fixed, any transformation of the second entity within an established tolerance from the
tirst will cause it 1o snap up to the face and therefore connect the two entitics.  Providing this
relationship enables the entities to act as 4 cohesive group. thus any transformation on cither

entity will effect both entities.

Figure 150: Generation of additional solid Figure 151: Completion of the
entities within the design space. conceptual design within the design
space.
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Continuing the process of generation and manipulation in a similar manner, additional
conceptual entities can be introduced and modeled within the design space. Figures 150 and
151 illustrate the placement and editing of additional conceptual entities thus completing the
conceptual design within an allowable design space. The completed conceptual design is
illustrated in figure 152, and shows the solution with and without the design space visible.
Since the modeler interactively restricts the generation and manipulation of entities within
satisfaction of the established constraints, the conceptual design is known 1o be within the

goals, objectives, and restrictions of the design space.

B)

Figure 152: An illustration of the rendered results of the conceptual design created by the
prototypical application C*Mod. A) [llustrates the conceptual design with the design
space rendered. B) [llustrates the conceptual design without the design space.
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5.4 Summary of Applications

The applications presented in this section are a small representation of the prototypical
application C*Mod. C*Mod illustrates that the concepts of constraint-based solid modeling is a
viable means of representing physical and relational design knowledge in an interactive solid
modeling cnvironment. The application demonstrates that the modeling of the physical
interaction between solid entities, spaces, and constraints. can be applied o the carly stages of
the design process, including schematic design. The demonstration provides a means of
exploration of the design envelope, or design space, in a means which is consistent with
expected behavioral patterns of the entities generated and modeled. A designer is therefore tree
to create solid entities, or solids representing spatial cntitics, and model not only the specific
geometry or topology, but the interaction between entitics realistically. The results of which is
that the computer is capable of providing the lower level decisions, such as encroachment upon
a setback line, or the intersection of two solids, and adjusting, or reacting o the user in the

form of an immediate response.




CHAPTER VI

EXTENSIONS AND FUTURE DIRECTIONS

During the course of its presentation, this thesis focused on a narrow spectrum of
design knowledge which can be represented in the interactive three-dimensional modeling
process.  The scope of work was limited in nature due to time constraints.  However, its
purpose was to provide a functional prototype which could be utilized to illustrate the
practicality of implementation. This docs not suggest that this is all that can be done on the
subject. On the contrary, their is much room ftor cxtension and expansion of thought both in
terms of the prototypical application C*Mod, and the fundamental theory of constraint-based
solid modeling. This chapter secks to explore the fronticrs of such direction by discussing
several possible extensions 1o the prototypical application as well as extensions (o the presented
constraint-based modcling operations and theory.  In addition, this chapter will discuss the
anticipated future direction of constraint-based solid modeling and its future role in the

interactive process of Computer-Aided Architectural Design.
6.1 Extensions to C-Mod

The prototypical application C*Mod is not the solution to the constraint-based question,
there is room for improvement. This section claborates on a two important arcas which would
cnhance the application and provide a fully developed interactive modceler.  The first, is
extensions to the operations implemented, and includes the completion or implementation of

the basic constraint opcerations discussed in Chapter 1. The second, is to take advantage of
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coherence in the implementation of the internal workings of the application.  Both of these

extensions are discussed in the following sections.
6.1.1 C+Mod Operations

Due to restricted time constraints, scveral basic operations were not implemented or
tully developed. To provide a complete working prototype of the operations discussed in
Chapter II, C*Mod would need to have these operations included. Among the operations left
out arc the spatial characieristics, which would support area anu vo''metric constraint
modeling, rotational attributes, which would support three-dimensional rotational constraints,
and containment relationships, which would allow the specification and ownership of
clements. The implementation of these operations is not a major undertaking, since the user
interface and internal representation are in place. However, implementation of these operations
would greatly reduce the efticiency of the algorithms required 10 produce realistic real-time

responses in the interactive modeling process.
6.1.2 Algorithm Coherence

C+Mod can eftfectively provide realistic responses to the interactions between entitics in
the current implementation.  However, it is possible 1o cnhance these operations by taking
advantage of the coherence presented in the internal structure of the cntities.  One such
coherence is provided in the method of determining when 1o transform sccondary entities
which intersect, or collide with the primary entity.  Once interference is detected,
transformation in the same direction implics that interference will always be detected.
Therefore, taking advantage of this information will greatly reduce the number of calculations
required during the transformation. Converscely, it an cntity is transforming in a direction
away trom another entity, with the cxception of the association relationships, there is no need

to confirm that the entities do not interfere with one another, this is inherent as well. By taking
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advantage of inherent nature of objects in three-space, the execution of the program could be
greatly enhanced, and therefore provide a more realistic response in the interactive modceling

process.
6.2 Extensions to Constraint-Based Modeling Operations

The cxtensions to the prototype application discussed above would allow the
introduction of additional operations to the constraint-based modeling cnvironment.  This
section discusses some of these extensions in general and includes the exploration of additional

entity characteristic, relational characieristics, and physical laws of nature.
6.2.1 Entity Characteristic Operations

The entity characteristic operations presented as the basic set of constraints specifically
apply to the physical description of the entity.  These physical descriptions included
representation, dimensional criteria, arca and volumetric requirements, and mobitity.  This
avenuc of operations was selected as a fundamental sct of operations which would illustrate the
basic intcractive nature of constraints upon the modceling process. In the event that the modeler
was 10 assume a morc realistic role, additional operations would be required.  Operations such
as mass, surface texture, rigidity, and selectable mobility. The tollowing is a brief discussion
of cach of these possibilitics.

The cntity characteristic of mass would allow the modeler to introduce the natural laws
of physics to the interactive process. The mass of an entity would determine potential energy
which would be transferred during an interaction. Additionally, it would cftect the momentum
the entity gains and sustains during the interactive modeling process.  The use of this
characteristic would include modeling momentum of a structural member or component, and

visualizing its reaction in a three-dimensional environment.
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Surface texture would again allow the modeler 1o react 1o natural laws of physics. The
surface qualitics of an entity determinc the friction generated when two objects are transtormed
along their faces, and would effect the relational characteristics of the modeling process. The
usc of this characteristic would include realistically modeling the interaction between clements
of differing surface qualities such as a table leg being transformed along a carpeted floor.

Another physical characteristic which would benefit the constraint-based modeling
approach is the use of rigidity. Rigidity would allow the modcling of materials with differing
physical compositions. A wood column could be modeled with its base fixed in three-space,
and interactively forced to bend until failure. The use of this characteristic is evident in the
interactive modeling of structural components during the design process.

A final extension to the entity characteristic operations is that of specifiable mobility.
Currently the mobility of an entity is fixed as an object. To realistically model the interaction
with other entities, and utilizing some of the additional teatures listed above, the modeler must
be able to fix any topological level of the entity in three-space. With this extension it would be
possible i0 model the column example presented above by specifying that the bottom face of

the column was (o be fixed in three-space.
6.2.2 Relational Characteristic Operations

The interactive nature of a constriant-based modceler must allow, and provide for,
relational characteristics between entities. This thesis proposed a few of the basic relationship
which exist between cntities such as containment, association, and proximity. In addition to
these several other relationships could be modeled to enhance the realistic interactions between
clements. Among those arc ownership, grouping, and topological associations. Each of these
additional operations are discussed below.

Ownership differs from containment in that an entity can own, or belong to another

entity outside the bounds of a spatial representation.  This relationship would cstablish a bond
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between entitics which would permit it o perform as a contiguous collection of catitics while
still retaining the individual characteristics. Thus a roof system composed of structural beams,
joists, decking, and insulation could behave as a contliguous unit when being transformed in
three-space while behaving in accordance with the requirements of cach individual component.

Grouping would allow a collection of cntities to be grouped together into a cohesive
unit. This difters from ownership in that the individual characteristic are not retained. The
collection of cntities behaves as a single entity with its own sct of constraints 1o be applicd 1o
the modeling process. In this relationship the components of a chair, arms, legs, scat, and
back, could be grouped together and given its own sct of constraints, or design knowledge,
which identifics it as a chair, and therefore controls its behavior as a single entity.

The final additional relational operation is an extension to the cxisting association
operation. By allowing the speciiication of associations between topological fevels, an
interactive modeler could associate, attract or repel, ditfering parts of the entity. Certain faces
of an entity may be required 1o retain an attract association, such as the ends of a wall, while
others may be required 1o retain a repel association, such as an opening for a door. By

allowing this diversity within the entity itself, realistic situations can be modeled.
6.2.3 Physical Laws of Nature

To facilitate the realistic interaction between entities in an interactive modeler, the next
logical extension would be to include the physical laws of nature to the modeling process.
This is particularly important when determining the reactions from colliding entitics.  The
resultant direction vector may not be in parallel with, and containing the same force of, a the
moving entity. It is therefore important that when implementing any of the additional
operations suggested, that the natural laws of physics be considered as a primary extension o

the application.




6.3 Future Direction of Constraint-Based Solid Modeling

The potential for an interactive constraint-based solid modeling ol is clearly evident
when considering the realistic interaction between centitics, both in the physical and
metaphysical sense. To bring solid modeling into the carly stages of design, a modeler must
be capable of supporting these interactive qualities to realistically model the environment. As
the pretense for this thesis, interactive modeling within the quidelines established by the local
zoning ordinances, building codes, and construction practices, provides a powerful foundation
for future development of interactive solid modelers.

The future direction of constraint-based solid modeling stems trom the ability to
represent and model design knowledge 1o aid in the conceptual design process. This design
knowledge, whether user specified, or read from a databasc containing the specific zoning
ordinances, allows the modcler to perform as a powerful design tool in which the designer can
call on and utilize that information in an interactive modeling platform.  In this role, the

constraint-based solid modeler provides an important tool which the designer can use 10

enhance the conceptual and schematic design process.




CHAPTER VII

CONCLUSIONS

The application of design knowledge to the interactive modeling process as illustrated
and presented, provides a foundation for the exploration of realistically constraining the
behavior of user definable three-dimensional geometric entitics.  The goal of this thesis, as
stated in Chapter I, scction 1.4, was 10 develop a constraint-based solid modeler for
architectural applications which can be utilized as a tool {for Computer-Aided Architectural
Design. This thesis met that goal by successfully achieving the objectives stated.  How the
objectives were satistied follows.

The first objective, was to provide the ability 10 generate, represent, and manipulate
three-dimensional geometric entitics through the use of a graphical interface. This included the
facilities to store and support geometric and topological cditing {catures at the point, segment,
face, and volume levels. C*Mod provided this ability by supporting the internal solid data
structure as specified in Chapter IV. The interactive nature of the generative and manipulative
process of the modeler provided an excellent foundation for the implementation of constraint-
based operations.

Sccondly, the implementation was to allow for the specification of design knowledge
applicable to uscr definable threc-dimensional geometric cntitics such as solids or spatial
representations.  This included the ability to define, modity, store, and retricve constraints
upon the environment as well as the individual entities. Through the interactive user interface,
C*Mod provided a dialog between the uscr and the application which facilitated this

specification and manipulation of design knowledge. Additionally, the prototypical application
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provided a means by which the entire set of constraints could be casily and permanently stored
and retrieved at the discretion of the user,

The third objective was 10 provide the ability to manipulate the three-dimensional
geomelric entitics in a maaner which is consistent with the behavioral characteristics dictated by
the entity specitications.  As illustrated in Chapter I and Chapter 1V, the prototypical
application provided this realistic interaction of entitics in an efticicnt and realistic manncer.
This interaction allowed the generation and manipulation of entitics which facilitated the use of
design knowledge 10 model a space constrained by realistic site requirements. The results of
which allowed the interactive modeling within a design space.

Finally, the last objective was 1o provide the ability 1o extract information from an
centity, which was provided by the specification of the entity.  This was achieved by providing
a query operation in the constraint mode. A uscr therefore has the ability o view the entire set
of consiraints, for any cxisting cntitics as well as the system specitications.

The primary expectation of this thesis was to contribute towards the development of an
architectural solid modeler, which has the ability 0 represent information about a specific
entity, as a foundation for design research, education, and practice.  Four main goals were
achieved in this research. One, support of the theoretical foundations which have preceded this
research, including the support for the interactive constraint process of achieving problem
satistaction. Two. the delineation and definition of the basic components for a constraint-
based solid modeler. including the representation of design knowledge, and the realistic
interaction of conceptual entities.  Three, the successful implementation and cvaluation of a
prototypical application, CsMod, which illustrated concepts and theories presented.  And four,
the establishment of a strong foundation for further rescarch and education in the use of
interactive constraint-based systems in CAAD applications.

In 1973, Geoffrey Broadbent, discussed the use of computers to aid in the exploration

and development of the design space interactively. By extending this carly discussion to
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include the generative and manipulative capabilitics of a solid modeler, and modifying the
theories of the modeling process 10 include interactive constraint  satisfaction, design
knowledge, and theretore constraints, can logically and cfticiently enabie a designer to bring
the compuicr closer to the carly stages of the design process.  The ability o realistically
represent the solid and spatial centities, as well as their behavioral patierns, provides an
additional benelit of interacting with the modcler in a realistic manner.  This thesis has
illustrated that the application of design knowledge in C*Mod, although limited in scope, can
provide an interactive modeling environment which allows design knowledge 1o constraint or
limit the generation and manipulation of solid and spatial entitics, and that the usc of such a

design tool has a strong and desirable link to the conceptual stages of the design process.
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